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ANODOS DE CÉRIA COM ADIÇÕES DE COBALTO E COBRE PARA
UTILIZAÇÃO DIRETA DO METANO EM PILHAS A COMBUSTÍVEL DE

ÓXIDO SÓLIDO

Bernardo Jordão Moreira Sarruf

Fevereiro/2018

Orientador: Paulo Emílio Valadão de Miranda

Programa: Engenharia Metalúrgica e de Materiais

O uso de hidrocarbonetos em pilhas a combustível de óxido sólidos tem se
mostrado como uma engenhosa alternativa para tornar a aplicação mais viável fa-
cilitando sua penetração no mercado atual e diminuindo o aporte em investimentos
infraestruturais. Portanto, o objetivo do presente trabalho foi desenvolver um ma-
terial com uma matriz de céria e adições de cobalto e cobre para servir como anodo
em pilhas a combustível de óxido sólido. O material deve ser capaz de promover a
oxidação eletroquímica de hidrocarbonetos como metano.

O eletrocatalisador foi sintetizado em diferentes proporções de cério, cobalto e co-
bre, foi caracterizado e testado segundo suas propriedades eletroquímicas utilizando-
se de difratometria e fluorescência de raios X, análise termogravimétrica, redução a
temperatura programada, testes de condutividade elétrica, testes de desempenho e
espectroscopia de impedância eletroquímica, quantificação através de cromatografia
dos gases produzidos. Por fim, as pilhas operadas foram submetidas à microscopia
eletrônica de varredura, análises de espectroscopia Raman e oxidação a temperatura
programada para avaliar a presença de eventual carbono proveniente de coqueifi-
cação.

As pilhas produzidas se mostraram capazes de operar em temperaturas da ordem
de 700-850�C com hidrogênio ou metano como combustíveis. Os testes na pilha pós
operada atestaram sua integridade além de confirmarem que quantidades irrisórias
de carbono remanesciam em sua estrutura. Portanto, o material de anodo se mostrou
promissor para aplicações reais em pilhas a combustível de óxido sólido.
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The utilisation of hydrocarbons as fuels in solid oxide fuel cells presents as an
ingenious alternative for boosting the market widespread of such technology. The
main advantage is the lower need of infrastructure investments. Therefore, the
objective of this thesis was to develop a ceria-based material with cobalt and copper
additions to serve as anode for the electrochemical oxidation of methane.

The electrocatalysts powders were synthesised with different proportion of
cerium, cobalt and copper and were then tested and characterised. The characterisa-
tion was done by X-ray diffractometry, X-ray fluorescence, thermogravimetric anal-
ysis, temperature-programmed reduction, DC-conductivity tests and particle size
distribution. The tests consisted in electrochemical performance and impedance,
gas cromatography. Post-mortem characterisation was done by scanning electron
microscopy and was focused in assessing eventual carbon deposition by Raman spec-
troscopy and temperature-programmed oxidation.

The produced cells and compositions have shown to be suitable for operating
with both hydrogen or methane as fuels in the range of 700-850�C. The post-mortem
showed the anode integrity and besides that, no significant carbon was found in the
anode post-mortem bulk. Therefore, the anode material has presented itself as a
promising alternative for real solid oxide fuel cells applications.
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Chapter 1

Introduction

Considering the history of fuel usage through the development of mankind it is

notable the trend on de-carbonisation, or at least the need for it. If we account

wood, coal, fossil fuels, natural gas and hydrogen in a timeline respectively, it is

clear that the ratio between carbon and hydrogen decreases whereas the specific

energy of the fuel increases [1] thus the argument that human society is paving its

way into the so called hydrogen era seems to make sense. The average values can be

seen in Figure 1.1, that additionally, shows that the chemical nature of fuels become

less complex.

Figure 1.1: Timeline showing how the fuels evolved in terms of C/H and energy
density.

Moreover, associated with hydrogen as source of energy, comes the idea of fuel

cells. The fuel cell technology is increasingly notable especially by the advances in
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fuel cells vehicles related to polymer electrolyte fuel cells (PEFCs). Additionally, in

Japan more than 200,000 homes have fuels cell systems for distributed generation

of energy.

Fuel cells work by converting a potential chemical energy of a fuel directly into

electricity, thus being more efficient than systems that have intermediate steps before

delivering power. Fuel cells basically work with a fuel being oxidised in the anode

side whilst oxygen is reduced at the cathode side thus delivering an overall reaction

that generates electrons, steam and heat.

1.1 Fuel cell - Thermodynamics

Considering an ideal cell, due to the first law of thermodynamics, every reaction

Enthalpy (�H) is equal to the generated Work (W ), in this case electric work, plus

Heat (Q), as seen in Equation 1.1.

�H = W +Q (1.1)

According to the second law of thermodynamics (1.2), although the amount of

Entropy (�S) increases with time if the system remains isolated, the Entropy tends

to split until the system reaches thermal equilibrium when interaction with another

system occurs.

I
dS = 0 (1.2)

In this case, Entropy is compensated by heat transport throughout the system
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[2], so that Equation 1.2 can be written as

�S =
Q

T
(1.3)

Combining Equations 1.1 and 1.3:

W = �H � T.�S (1.4)

therefore,

W = �G (1.5)

The reactions reversible efficiency (⌘) is given by the ratio between Gibbs free

energy (�G) and the Enthalpy of the reaction, thus:

⌘ =
�G

�H
=

�H � T.�S

�H
(1.6)

Fuel cells present several advantages that outweigh heat engines. High effi-

ciencies can be achieved, since no intermediate transformation such as chemical

to thermal and then thermal to electric is needed such as in Carnot cycles based

system. Fuel cells are zero or quasi-zero emissions due to non-hazardous sub-

products such as water. In addition, they are low sound pollution due to their

electrochemical nature and they have energy co-generation capacity since the

exothermic reactions can produce large amounts of heat [3]. The variety of fuel cells

are listed as follows as a function of their electrolyte characteristics.
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1.2 Alkaline electrolyte fuel cell - AFC

The electrolyte of this kind of fuel cells is a potassium hydroxide aqueous solution

in an asbestos matrix. These fuel cells operate at low temperatures in a range of 50

and 200�C using pure hydrogen as fuel and pure oxygen as oxidizer.

There is no need to use noble metals as catalysts which makes these devices a

cheap alternative fuel cell [4]. On the other hand, it needs to operate with high

purity gases [3]. R&D for this technology eventually stopped, specially after Nafion

creation that could be feasibly used at lower temperatures [5].

1.3 Polymer electrolyte fuel cell - PEFC

This system possesses an electrolyte composed by a proton conducting perfluori-

nated polymeric membrane. Those membranes have SO3
- terminal groups that, in

the presence of steam, due to an humidified polymeric membrane, link with H3O+

conducting the protons generated at the anode.

The performance of such devices depends on their membrane humidification.

Although the membrane must be sufficiently humidified to conduct protons, an

excess of humidification leads to flooding. The flooding of the membrane impedes

the natural flow of the gases. PEFC are considered high efficient devices [6].

As these fuel cells operate at low temperature such as 50-180�C, the maximum

temperature allowed in the system will be limited by the water boiling point, thus

limiting their efficiency. High pressures are therefore required in order to remove

the liquid water reaction products [3].

1.4 Phosphoric acid electrolyte fuel cell - PAFC

Phosphoric acid electrolyte fuel cells use an electrolyte composed by concentrated

phosphoric acid dispersed in a silicon carbide matrix. They operate at temperatures

around 200�C and use electrodes composed by dispersed platinum particles on a
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carbon substrate [7].

They operate with hydrogen as fuel and oxygen as oxidiser and there is no need

to use high purity oxygen (CO2 amounts are acceptable) [3]. However, the use of

platinum makes them quite expensive to market widespread.

1.5 Molten carbonate electrolyte fuel cell - MCFC

These devices have an alkaline carbonate electrolyte composed by sodium, potassium

as well as lithium operating at high temperatures such as 650�C. Due to the high

operating temperature the electrolyte is molten, bringing the need of the utilisation

of porous material (alumina) as a support for the electrolyte [8].

One advantage of these fuel cells is that as they operate at high temperatures,

the need of using noble metal catalysts is avoided. They operate with hydrogen or

methane as fuel and a mixture of O2 (air) and CO2 as oxidiser [8].

1.6 Solid oxide fuel cell - SOFC

One of the first solid oxide fuel cell - SOFC - devices was ingeniously proposed in

1930 by BAUR and PREIS [9]. Inspired by the XIXth century Nernst lamp [10–

12], they created an apparatus using 15% wt. Yttria-Stabilized Zirconia (YSZ) as

electrolyte, an iron based anode and an Fe3O4 cathode.

As all fuel cell devices, an SOFC is capable of combining the chemical energy

of a given fuel and an oxidiser to convert it directly into electrical power and heat

as shown in Figure 1.2. Whilst operating, the main factors that deviate the per-

formance from an ideal behaviour are the ohmic resistance - that generates heat -

and the mixture of gases, which prevents fuel utilisation ever reaching its maximum.

As SOFCs produces heat it is therefore considered an energy co-generator [2]. The

additional heat generated can be used to pressurise steam turbines or simply warm

houses.

SOFC single cell operation is given by the ionisation of a fuel (e.g. H2) at the
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Figure 1.2: Reaction scheme at a single SOFC.

anode side (Equation 1.7); the electrons flow through an external circuit - deiver-

ing electrical power - and finally reach the cathode side where the oxidiser (O2) is

reduced (Equation 1.8). After reduction takes place, oxygen ions diffuse through

the electrolyte membrane, oxidise the fuel (Equation 1.9) and water is formed as

product which, is desorbed away from the anode [2, 13, 14].

H2 �! 2H+ + 2e� (1.7)

1

2
O2 + 2e� �! O2� (1.8)

H2 +
1

2
O2 �! H2O (1.9)

Steam concentration increases with fuel utilisation (Uf ). Fuel utilisation is de-

noted by the complementary of the ratio between the amount of fuel that leaves the

system without reacting (ṁo) and the total amount of fuel input (ṁT ), as shown in
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Equation 1.10.

Uf = 1� ṁo

ṁT
(1.10)

The electric current (I in A) produced is a linear function of the H2 molar flow

reacted (ṅH2 , in mol.s-1) and the amount of electrons generated by each mol of fuel

(e as a discrete non-dimensional unit), as shown in Equation 1.11.

I = ṅH2 .F.e (1.11)

where, F is the Faraday factor (in s.A.mol-1). Therefore, as the electric power (P )

is equal to the electric work performed by the charge, electric current measurement

is a simple way to determine the actual amount of fuel used:

P = ṅH2 .W = V.I = ṅH2 .�G (1.12)

The Nernst standard potential is given combining Equation 1.12 with Equation

1.11.

V o
N =

�Go

e.F
(1.13)

The Gibbs free energy represents the total amount of energy available to generate

work. It is a function of the equilibrium constant K which depends on the partial

pressures of the reactants.

�G = R.T.ln(K) (1.14)
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Moreover:

K = ⇧j

✓
pj
p0

◆⌫j

(1.15)

in which pj is the partial pressure of a given compound j, ⌫j represents this

compound stoichiometry and p0 is a standardisation of pressure (e.g. 1 bar or 1

Pa, as reference). Merging Equations 1.13, 1.14 and 1.15, the Nernst potential is

expressed by Equation 1.16 [2, 15].

VN = V o
N � R.T

e.F
ln

✓
Pp

Pr

◆
(1.16)

SOFC single cells present themselves in a variety of configurations such as planar,

tubular or even microtubular [2]. Planar cells can also be classified by their support

material such as the one of the electrodes or the electrolyte. As the ohmic resistance

represents one of the most relevant overpotential for the cells, efforts have been

made to fabricate this component the thinnest possible. One of the solutions is to

manufacture the cells supported by the anode, which allows the electrolyte to be

just a few micrometers thick thus decreasing losses by ohmic resistance [16].

Figures 1.3a and 1.3b represent an electrolyte supported and an anode supported

SOFC single cell, respectively.

(a) (b)

Figure 1.3: Planar (a) electrolyte-supported and (b) anode-supported SOFC cross-
section.
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1.6.1 Electrolyte

The electrolyte is usually the responsible to name the fuel cell itself. In SOFCs the

electrolyte has the role of transporting oxygen ions through its the lattice vacancies

or protons (depending if the SOFC is oxygen or proton conducting) from the cathode

side to the anode side. The ion conduction in the oxide electrolyte occurs by a

thermally activated process called oxygen vacancy hopping thus taking place if the

structure possesses enough oxygen point defects [17, 18].

Therefore a suitable SOFC electrolyte must fulfill some requirements. These

structures must be dense so as to impede gas leakage, must be ionic conductors

(about 0.1 S.cm-1), electronic insulators (<10-3 S.cm-1), stable whilst submitted

to high temperatures and to oxidising/reducing atmospheres, and capable of be-

ing produced thin enough to prevent high ohmic losses [2]. Regarding mechanical

properties, fracture strength over 400 MPa is common [19].

Fluorite, perovskite based structures, brownmillerite-like phases and pyrochlores

have shown to be suitable as state-of-art processes of production are available and

they are ionic conductors due to oxygen vacancies present in their crystal struc-

ture. Some Bismuth oxides have shown greater ionic conductivities than ceria and

zirconia-based fluorites under lower temperatures such as 600�C. However Bismuth

Oxides also present considerable electronic conductivities and in addition are expen-

sive alternatives [20, 21].

Fluorite materials used as solid electrolytes

Fluorite materials are known to posses a face centred cubic (fcc) structure of cations

and anions occupying its tetrahedral sites as shown in Figure 1.4. Fluorite type

materials, specifically Yttria-Stabilised Zirconia, have been used in SOFCs since

their beginnings with BAUR and PREIS [9] as the first electrolyte material. Through

the years significant improvements were done on such materials aiming to achieve

higher ionic conductivities with thinner structures [22, 23].

ZrO2, CeO2 and Bi2O3, are the most used fluorite type materials as SOFC elec-
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Figure 1.4: Fluorite Structure - A = Darker atoms (cations) and B = Brighter atoms
(anions).

trolyte. The Kröger-Vink notation shows (Equation 1.17) [24], cations A (Zr4+

or Ce4+) host acceptor cations B (Gd3+, Sm3+ or Y3+) thus introducing oxygen

vacancies.

A2O3
2BO2⌦ 2A

0

B + 3O⇥
O + V ..

O (1.17)

The concentration of vacancies is a function of the amount of dopant observed

on Equations 1.18 and 1.19.

�ion = e�.n.µ (1.18)

�ion = A[V ..
O ][1� V ..

O ]exp

✓
�E

R.T

◆
(1.19)

The e� represents the electric charge, n the number of ionic vacancies and µ their

mobility [2]. The deductions expressing the pre-exponential factor A are treated in

detail in KILNER [25]. Equation 1.19 shows that the ionic conduction is a thermally
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activated process and depends on the amount of dopant both factors that directly

influence on oxygen vacancies density and mobility. However, it may be stated that

deliberately raising the dopant amount will increase the oxygen vacancy density. On

the other hand, experimental data has confirmed that the ionic conductivity reaches

a maximum at a dopant concentration of about 10-20 mol % dopant.

The gradient of oxygen partial pressure between the electrodes is the driving

force for electricity production in an SOFC. Therefore it is correct to state that a

highly reducing atmospheres at the anode and a highly oxidising one at the cathode

should result in higher power densities. Acceptor doped Ceria at high temperatures

and low oxygen partial pressures may form oxygen vacancies generating two elec-

trons located on the periphery of Ce3+. This characterises the formation of small

polarons that increases electronic conductivity depleting the electrolyte material

[26]. Zirconia based materials are found to present lower oxygen partial pressure at

temperatures such as 850�C thus showing themselves as more suitable materials for

high temperatures than Ceria based ones [27].

The effect of microstructure characteristics such as grain boundaries and grain

size interferes directly in total electrical conductivity of polycrystalline electrolyte

materials. For instance, the amount of impurities and secondary phase segregations

throughout its microstructure causes lattice mismatches that deplete ionic conduc-

tivity in regions such as grain boundaries. AC impedance spectroscopy is used

to measure and separate intra-grain and grain boundary contributions on ion con-

ducting resistivity [28]. Grain boundary conductivity is known to be 2-3 orders of

magnitude lower than intra-grain conductivity [29–31].

Some ionic conductivity curves are presented in Figure 1.5 for various solid elec-

trolyte materials.

Perovskite materials used as solid electrolytes

Some groups have investigated the ABO3 structures that are found to present ionic

conductivity by hopping mechanism [33, 34]. However, it was further suggested that
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Figure 1.5: Ionic conductivity of solid electrolyte materials. (Reprinted with per-
mission from Elsevier - Ref. [32]).

such perovskite lattices do not allow interstitial diffusion easily, thus presenting high

energy barriers [26].

Some Lanthanide-based perovskites have been intensively studied as electrolytes

[35–38]. The LnBO3 can present B as Al, In, Sc and Y that shows great mechanical

compatibility and reasonably easy fabrication processes. The greatest concerns are

their poor ionic conductivity as well as high p-type electronic conduction in oxidis-

ing atmospheres. For that matter, aluminate-type perosvskites are being used as

protective layers on the anode side of LaGaO3 electrolytes [39, 40].

1.6.2 Cathode

SOFC cathodes promote the oxygen reduction through their porous channels into

bivalent oxygen ions. The reaction occurs promoted by electrons that arrive from

the external circuit and are accepted by oxides in the cathode that have the proper

activity to absorb oxygen molecules and thus facilitate their reduction by those

electrons. Oxygen reduction usually takes place at specific sites called triple phase

boundaries - TPB - represented by an interface of cathode oxide material, electrolyte

12



material and a gaseous oxidiser, such as oxygen. After being reduced, oxygen ions

diffuse through the electrolyte to the anode/electrolyte interface.

The existence of the Triple Phase Boundaries - TPB - was first reported in the

1920s. The TPB structure consists of an interface between the ionic conductor

(electrolyte material), the electronic conductor (anode or cathode material) and

the gas. Concerning cathodes, electrons arrive serving as supply to reduce oxygen

molecules inside the electrode channels. These oxygen ions diffuse through the

electrolyte material to the anode. This process describes the oxygen reduction in

SOFCs cathodes regardless of its microstructure [26], and is depicted in Figure 1.6.

Figure 1.6: Cathode TPB illustration in an LSM/YSZ system.

Thus, for the reactions to occur, cathode materials should be compatible with

the electrolyte material. Therefore they must be thermal expansion compatible,

possess chemical stability at high temperatures and under oxidising atmospheres,

they also must have chemical activity to adsorb oxygen molecules so as to catalyse

the reaction, and have high ionic and electronic conductivity. Yet they must be

sufficient porous as well as cost effective [41–44]. The first material to be used as

cathode in SOFCs was platinum but its high cost made the application infeasible.

Perovskite-based materials have been widely used as SOFC cathode. These

materials have shown high activities and stability under the required conditions

with reasonable cost effectiveness [45–47].
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Perovskite materials used as cathodes

Perovskites are oxides known by possessing larger cations at the A-sites with valence

n, smaller cations at B-sites with valence (6-n) and six O2- ions, as depicted in Figure

1.7. Therefore, those features determine the ABO3 structure of such materials.

The geometric distribution of a perovskite is given by the Goldschmidt’s tolerance

factor in Equation 1.20. The tolerance factor determines a range - 1.0 > tg > 0.75 -

in which the perovskite is stable [2].

tg =
(rA + rO)p
2.(rB + rO)

, ri are the radii of each ion (1.20)

Figure 1.7: Perovskite structure - Larger cations on A-sites and smaller ones at
B-site. (Adapted from Ref. [2] and Reprinted with permission from Elsevier).

Although LaMnO3 structures are naturally found as orthorhombic, they suffer a

phase transformation into rhombohedral at temperatures such as 600�C. This phase

transformation relies strongly on oxygen partial pressure thus on stoichiometric im-

balance. On the other hand, doping LaMnO3 with lower valence cations, causes a

deficiency of A-sites, increasing the transformation temperature. On materials such

as La1-xSrxMnO3-� - Lanthanum-Strontium doped Manganite (LSM) - the transfor-

mation to the cubic structure occurs at 1000�C [48–54].
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In most cases, undoped perovskites have low ionic conductivity, thus partial

substitution of A-sites with acceptor cations such as Sr2+, Ca2+ or Ba2+ or even

the reduction of B-sites (B3+ �! B2+) promotes oxygen vacancies which is the

requirement for ionic conduction. Although Sr is used as dopant to enhance ionic

conductivity, it does not increases the oxygen vacancies but rather oxidises man-

ganese ions thus increasing the electron-hole concentration and improving electrical

conductivity [55]. The dodping effect is depicted in Equations 1.21 and 1.22.

Mn⇥
Mn + SrO

LaMnO3⌦ Sr
0

La +Mn.
Mn + 3O⇥

O (1.21)

thus [49]:

2Mn.
Mn +O⇥

O ⌦ 2Mn⇥
Mn + V ..

O +
1

2
O2 (1.22)

For intermediate temperatures - IT-SOFC - materials such as

Ln1-xSrxCo1-yFeyO3-�, (Ln=Lanthanide) appear as a promising choice, show-

ing high electronic and ionic conductivity as well as reasonable catalytic activity to

oxygen reduction [56–59].

In addition, the linear behaviour between electrical conductivity and 1/T sug-

gests that the small polaron mechanism acts over the charge transfer process [60].

Moreover, the oxygen partial pressure tends to highly influence on electrical conduc-

tivity in perovskites. Other than that, lanthanum manganite, as aforementioned,

exhibits both excess and deficiency of oxygen depending on oxygen partial pressure.

Therefore, at low oxygen partial pressure manganese is reduced thus positive

charge compensates and the perovskite becomes oxygen deficient. On the other

hand, at normal SOFC cathode operation conditions (high oxygen partial pressure)

the perovskite becomes negatively charged thus with oxygen excess [61].

Manganese oxidation in LSM cathodes could be compensated by both oxygen
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interstitials or cation vacancies. However, due to the closed packed perovskite struc-

ture the oxidation is most likely to occur by cation vacancies. Studies via neutron

diffraction and high resolution microscopy [52, 62, 63] have confirmed this state-

ment. Thus this excess of oxygen in LSM cathodes can be explained in terms of

Schottky disorder.

The development of techniques capable of determining the diffusion coefficient as

well as the surface exchange coefficient in new cathode materials is very important

to incur on the viability of such compounds. For that matter, some works have been

carried out some works with O16/O18 isotope exchanging giving significant answers

about a variety of cathode materials [39, 64].

1.6.3 Anode

The anode is one of the most important structures in an SOFC, being responsible

for the fuel oxidation This reaction takes place at the anode triple phase boundary

(TPB) where electrolyte, anode, and gaseous phase meet. The anode TPB is there-

fore composed of the anode electrocatalytic and electronically conducting phase, the

electrolyte phase which is an ionic conductor, and the gaseous fuel. The process of

hydrogen oxidation can be written in Kröger-Vink notation as Equation 1.23 [65]

showing hydrogen gas being oxidised by oxygen ions transferred by electrolyte ma-

terial, generating electrical current, water vapour and leaving an oxygen vacancy

behind.

H2 +O2�
Ele ⌦ H2O + 2e� + V ..

O,Ele (1.23)

Figure 1.8 exemplifies the anode side TPB and the electrochemical reactions that

take place.

Several material requirements must be met simultaneously. The anode material

must be compatible with the electrolyte material concerning thermal expansion char-
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Figure 1.8: Anode TPB illustration in a Ni/YSZ SOFC.

acteristics, it must be chemically stable at high temperatures and under reducing

atmospheres, it must posses chemical activity to adsorb the fuel molecules to then

catalyse the reaction of oxidation and/or molecule cracking; have high electronic

conductivity and a high surface area. Moreover, nowadays it is common that the

anode material is required to directly catalyse conversion of hydrocarbon fuels such

as natural gas or ethanol, without being affected by carbon formation [2, 26, 65, 66].

Due to all the aforementioned requirements, a careful materials selection has to

be made. Inspired by the field of heterogeneous catalysis, noble and transition metals

were the first materials to be used as anode electrocatalysts. Initially, platinum

was used due to its known great catalytic activity to convert hydrogen. Although

platinum works well in the beginning, it starts to loose adhesion with the electrolyte

in long-term working conditions [67].

During SOFC development several transition metals such as Ni, Co, Mo, Fe, Mn,

and Ru were tested as anode catalysts. Amongst those, Nickel has shown superior

electrocatalytic activity [2, 68–70]. Despite having the best activity, metallic nickel

presents some incompatibilities such as in thermal expansion coefficient with regards

to the electrolyte. So far, the addition of YSZ to the Nickel based material has shown

to decrease thermal expansion differences between YSZ and its YSZ/Ni composite

cermet [71]. Moreover, due to the incontestable importance of the TPB, YSZ plays

two remarkable roles in a composite anode: as ionic conductor it increases the

occurrence of TPBs in the anode bulk, thus essential in enhancing electrocatalytic

activity, and it offers a ceramic “backbone” to provide pores (gas phase access) and
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prevent nickel phase coarsening [72–74] to a certain degree.

1.7 Associated Overpotentials

As already said in Section 1.6, Equation 1.16 shows that the Nernst reversible ther-

modynamic potential depends on the mixture of gases in reaction. In addition,

when the cell is in operation there are overpotentials associated to charge and mass

transfer [2].

1.7.1 Ohmic overpotential

All materials, other than superconductors, offer some kind of resistance against

electric charge flow. Concerning SOFC, electrodes and current collectors offer some

resistance to electron transfer and the electrolyte to ionic charge transfer. These

influences can be modelled by Ohm’s Law in Equation 1.24.

⌘Ohm = (⇢e.le + ⇢c.lc + ⇢a.la +Rcol).j (1.24)

in which ⌘Ohm represents ohmic polarisation, ⇢e, ⇢c and ⇢a electrolyte, cathode

and anode ohmic resistivity, respectively, le, lc and la electrolyte, cathode and anode

thickness, respectively, Rcol is the ohmic resistance offered by the current collecting

system and j is the current density. However, as the electrolyte contribution is far

higher than others, Ohm’s Law can be simplified to Equation 1.25.

⌘Ohm = ⇢e.le.j (1.25)
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Or

⌘Ohm = ⌘0.exp

✓
E

R.T

◆
.le.j (1.26)

Since the electrical conductivity is the inverse of the resistivity (⇢ = 1/�) thus

Equation 1.27 [75]:

� = �0.exp

✓
�E

R.T

◆
(1.27)

in which � represents the conductivity, ⌘0 and �0 are pre-exponential factors,

and E is the activation energy.

1.7.2 Concentration overpotential

The diffusion of gaseous species through the channels of the electrodes - mass transfer

- is a species transfer described by the conservation laws. Therefore, Equation 1.28

states that the molar amount of the reagents is proportional to the molar amount

the products and consequently proportional to the electric charge generated by the

electrochemical reaction by each mol of reaction .

|�H2 | = |�H2O| = 2|�O2 | =
i.NA

2.F
(1.28)

in which �i represent each species i mass flow and NA is the “Avogadro’s Number”

[2, 15].

The mass transport in SOFCs electrodes occurs inside narrow pore channels,

indicating high probability of collisions between molecules. Moreover, species may

also collide, absorb and desorbt to the pores solid walls, as enunciated by Knudsen

[76].
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Regarding electrode supported cells, it is important to introduce a concept called

limiting current density. For instance, considering an anode-supported cell, the

anode thickness is much higher than the cathode one, thus as KIM et al. [77] stated,

Equation 1.29 says that:

jal =
2FpaH2

Def
a

RTla
(1.29)

in which paH2
denotes H2 partial pressure, la is the anode thickness and Def

a is the

effective diffusion coefficient for the given binary system - H2-H2O. This coefficient

depicts the model sensitivity for the occurrence of particles collisions either between

themselves or with pore walls. Therefore, variables such as porosity, tortuosity as

well as average pore radius have direct influence on this coefficient as shown in

Equations 1.30 , 1.31 e 1.32.

1

Def
i

=
⇠

"

✓
1

Di�j
+

1

Di,k

◆
(1.30)

in which Def
i is the effective diffusion coefficient for the electrode i, ⇠ is the

electrode tortuosity, " is the electrode pore fraction, Di�j is the amount of diffusional

contribution that is delayed by collisions between molecules and Di,k is the amount

of diffusion delayed due to Knudsen’s effects.

Di,k =
4r

3

r
8RT

⇡Mi
(1.31)

Di�j = 0, 00133

✓
1

Mi
+

1

Mj

◆ 1
2 T

3
2

P�2
i,j⌦D

(1.32)

In which r is the average pore radius, Mi is the molecular mass of species i , Mj
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is the molecular mass of species j, �i,j is the average characteristic length and ⌦D is

the collision integral. Therefore, anode concentration polarisation can be described

as in Equation 1.33.

⌘acon = �RT

2F
ln

✓
1� j

jal

◆
+

RT

2F
ln

✓
1 +

paH2
j

paH2O
jal

◆
(1.33)

Equation 1.33 shows that when j ! jal, the overpotential tends to infinite thus

the SOFC potential is zero. This is consistent with traditional models stating that

in high current densities, concentration polarisation takes place thus compensating

the potential of the cell.

Analogously to the anode, a limiting current density to the cathode can be

formulated [77].

jcl =
4FpcO2

Def
c⇣

p�pc
O2

p

⌘
RTlc

(1.34)

Therefore, the concentration overpotential for the cathode can be written as in

Equation 1.35.

⌘ccon = �RT

4F
ln

✓
1� j

jcl

◆
(1.35)

The detailed algebric procedure for Equations 1.33 and 1.35 depends on the

boundary conditions applied to each particular case. A vast number of studies have

been reporting their particular modelling conditions [78–80].

1.7.3 Activation overpotential

The activation overpotential shows a non-linear behaviour at lower current den-

sities but do not increases towards high current densities, in constrast to ohmic
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polarisation. Activation behaviour relies essentially on materials properties such

as electrical conduction, catalytic activity, morphological characteristics as well as

external factors such as temperature and atmosphere [2].

Butler-Volmer’s theory formulates a function between activation and morpho-

logical factor such as TPB density. This function is illustrated by a term called the

exchange current density as seen in Equation 1.36 [79] and denotes the rate at which

the electrochemical reaction takes place. Therefore, the higher the TPB density, the

higher the rate.

j = j0


exp

✓
�eF⌘at
RT

◆
� exp

✓
�(1� �)eF⌘at

RT

◆�
(1.36)

In which j0 is the exchange current density and � is the transfer coefficient.

At low current densities,
���eF⌘at

RT

�� << 1 and
��� (1��)eF⌘at

RT

��� << 1, thus the current

density can be approximated by Equation 1.37.

j ⇡ j0

����
eF⌘at
RT

���� (1.37)

Thus, the activation overpotential is given by Equation 1.38.

|⌘at| ⇡
RT

eFj0
j (1.38)

On the other hand, at high current densities the overpotential assumes a linear

behaviour as described by Tafel’s Equation 1.39 [81, 82].

⌘at ⇡
RT

eF�
ln(j0)�

RT

eF�
ln(j) (1.39)

Tafel’s Equation 1.39 is a linear function - a + b.ln(j) - in which the exchange
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current term denotes the particularities of each system being a thermally activated

phenomenon and having a strong dependence on TPB distribution throughout the

electrode microstructure. COSTAMAGNA and HONEGGER [83] demonstrate in

their work an specific model to exchange current estimative.

Finally, with all cell overpotentials stated, the cell final voltage can be described

as a function of current density in Equation 1.40.

V (j) = VN � ⌘Ohm(j)� ⌘acon(j)� ⌘ccon(j)� ⌘at(j) (1.40)

(a) (b)

Figure 1.9: SOFC standard (a) I-V curve and (b) impedance plot.

Moreover, the graph in Figure 1.9 depicts Equation 1.40 in which each overpo-

tential contribution is represented. As can be seen, activation losses usually domi-

nates the system at low current densities whereas in the range of practical operation

(between 0.8 and 0.5 V) ohmic resistance dominates. At high current densities,

concentration overpotential can be experienced as shown in Figure 1.9a.

In terms of impedance, Figure 1.9b presents the Nyquist plot, showing the ohmic

resistance represented by the real value that crosses the imaginary axis at zero for

the first time. Furthermore, total polarisation is represented by the second time that

the real axis crosses the imaginary axis at zero, whereas polarisation (activation plus
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concentration) is the difference between them.

1.8 Summary of the chapter and conclusions

Hydrogen-based technologies demand huge transformation of the existent infrastruc-

ture for the application to spread in the market [5]. Hydrogen can be produced by

several means such as methane steam and dry reforming, gasification of coal, water

electrolysis and so on [1]. On the other hand the processes of pre-processing existing

fuels to deliver pure hydrogen to a fuel cell is only necessary for the low temperature

fuel cells such as PMFC. Considering solid oxide fuel cells (SOFC) that operate

at high temperatures (500-900�C), methane decomposition or even electrochemical

oxidation can occur within the cell’s anode, thus the whole system can be more

efficient and less complex to operate.

Furthermore, as SOFC technology starts to leave the first stages of innovation

and is targeting towards market spread, biogas direct utilisation could be a feasi-

ble alternative of introducing the technology with minor impacts on infrastructure

needs. HARDMAN et al. [84] make a comparison between Tesla Motors electric cars

market strategies against the Fuel Cells Vehicles (FCVs), which are essentially PEFC

based. The comparison is valid considering that they are both disruptive innova-

tions and their conclusions show the examples of massive infrastructure investments

and how they are crucial for the technology to penetrate the market.

Recently, Nissan Motors have announced their first SOFC based car. The system

works basically with a pre-reformer that converts ethanol into syngas (H2 + CO)

thus feeding an SOFC stack finally charging a set of batteries. Essentially the car

starts with the battery and then keeps running under the fuel cell power. Obviously

Nissan objectives are bold whilst using a Solid Oxide Fuel Cell to power a vehicle

for the first time and big challenges will be experienced ahead. The complexity of

the reformer will be probably one of these challenges. In addition, the reformer will

represent more weight and space to be distributed throughout the automobile.

Therefore, a technology capable of using fuels such as ethanol and/or hydrocar-
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bons directly in the cells without needing an additional unit such as a reformer,

would represent a significant gain towards feasibility. This work aims to develop,

optimise and characterise an electrocatalyst to be used as an SOFC anode for direct

use of hydrocarbons such as methane. Materials that have been promising for that

matter such as cerium oxide [85] and cobalt oxide [86] are to be investigated.
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Chapter 2

Objectives

The aim of this thesis work was to develop a ceria-based anode electrocatalyst that

could operate directly with carbonaceous fuels. For that matter, the cell is required

to mitigate or even suppress coking throughout its microstructure whilst operating

with carbonaceous fuels.

As mentioned in the literature review, CeO2 has shown in many reports to be a

promising material for methane internal reforming or even direct usage into SOFCs

[87–93]. The addition of copper to ceria-based anodes has been demonstrated to

enhance electrical conductivity as well as inhibit coking [93–95]. In addition, adding

cobalt to the mixture has shown an increase on catalytic activity [96–98] in the

SOFC anode.

2.1 Summary of similar works

FUERTE et al. [98] developed a bimetallic anode material composed by cerium,

cobalt and copper by the co-precipitation method into an electrolyte Samaria-doped

Ceria electrolyte support and an LSM cathode. Their cells were operated in hydro-

gen, hydrogen mixed with methane and anhydrous methane, respectively, reaching

92, 76 and 13 mW.cm-2 of maximum power densities at 750�C.

YOO et al. [99], on the other hand, used a nickel-based anode with addition of

La0.2Sr0.8Ti0.98Co0.02O3-GDC produced by a solid-state reaction synthesis method
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and deposited onto an LSGM electrolyte support. They also operated with hydrogen

and methane reaching almost 200 mW.cm-2 with methane at 800�C.

ESCUDERO et al. [100], produced a bimetallic MoNi-Ce anode by co-

precipitation, using an LSGM electrolyte and an LSCF cathode obtaining 360

mW.cm-2 whilst operating with pure methane.

FUERTE et al. [101] operated their Cu and Cu-Co with CeO2 anode with hy-

drogen and hydrogen/methane mixtures. The maximum power densities for the

Cu-Ceo2 anode were 64 and 45 mW.cm-2, whereas for the Cu-Co-CeO2 anode they

were 103 and 67 mW.cm-2, for pure hydrogen and hydrogen/methane mixture, re-

spectively. Further work has also been done on ceria-Co-Cu catalysts for direct

utilisation of methane or butane [102, 103].

GROSS et al. [104] developed a Ce-Cu-YSZ anode with electrodeposited Co

with an YSZ electrolyte with an LSM cathode though operating just with hydrogen

reaching maximum power density of 120 mW.cm-2 at 800�C.

Therefore in the present work, a CeO2-Co3O4-CuO based catalyst was developed

for use in SOFC anode utilising the amorphous citrate method. Different compo-

sitions were tested under hydrogen or anhydrous methane as fuels in temperatures

ranging from 750 and 850�C. The steps of the project consisted in electrocatalyst

productions and characterisation, cells assembly, interface optimisation and charac-

terisation.

The whole work can be summarised into the following steps:

– Electrocatalyst synthesis with different metal concentrations (e.g. Ce:Co:Cu

molar proportions of 2:1:1, 1:2:1 and 1:1:2);

– Powder characterisation (X-ray diffraction, thermogravimetry analysis, X-ray

fluorescence, particle size distribution, temperature-programmed reduction

and DC electrical conductivity tests);

– Cells assembly and electrochemical/impedance testing;

– Synthesis of ceria-metal powders (monometallic) so that the role of each metal
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could be understood separately;

– Anode/electrolyte interface improvements;

– Electrochemical testing with hydrogen or methane;

– Cell post-mortem characterisation to assess eventual carbon deposition and

microstructure evolution.
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Chapter 3

Literature review

3.1 Reforming processes

3.1.1 Methane steam reforming

The internal reforming processes of hydrocarbons happen to be of high complexity

due to a number of parallel reaction paths that can take place. Methane Steam

Reforming (MSR) is one of the processes most used to produce hydrogen from

methane for example, as can be seen in Equation 3.1 [105–107]. This endothermic

process is carried out in excess of steam to avoid carbon deposition, followed by

the exothermic Water-Gas Shift Reaction (WGS), Equation 3.2, to increase the

production of hydrogen by adding more water. MSR is generally carried out in

reactors filled with nickel catalyst dispersed on an a-Al2O3 surface at 900�C.

CH4 +H2O ⌦ CO + 3H2, �H298K = +206 kJ.mol�1 (3.1)

CO +H2O ⌦ CO2 +H2, �H298K = �41 kJ.mol�1 (3.2)

Simulation run with Density Functional Theory suggest that temperatures lower
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than 500�C should be avoided since the reaction of carbon oxidation becomes rate

limited and solid carbon is thus formed [108].

3.1.2 Methane dry reforming

Methane dry reforming (MDR) is also possible in presence of CO2 as Equation 3.3

states [109]. As can be seen, the methane reforming processes are highly endother-

mic.

CH4 + CO2 ⌦ 2CO + 2H2, �H298K = +247 kJ.mol�1 (3.3)

Whilst reforming methane, some paths have to be avoided to suppress carbon

deposits over the catalysts. Methane cracking (Equation 3.4) which is its thermal

decomposition that produces hydrogen and leaves high concentration of carbon that

need to be further oxidised. Carbon monoxide reduction in Equation 3.5 is another

reaction that will produce high amounts of carbon in hydrogen-rich atmosphere.

Finally the so-called Boudouard reaction in Equation 3.6 also must be avoided.

CH4 ⌦ C + 2H2, �H298K = +75 kJ.mol�1 (3.4)

CO +H2 ! C +H2O, �H298K = �131 kJ.mol�1 (3.5)

2CO ⌦ C + CO2, �H298K = �171 kJ.mol�1 (3.6)
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3.1.3 Ethanol steam reforming

Ethanol steam reforming - ESR - has also been an alternative to hydrogen production

[110–112] as stated in Equation 3.7. Note that the enthalpy shown in Equation 3.7 is

considered when reactants are all in gas phase. However, if the reactants are liquids

the enthalpy increases to 347.4 kJ.mol-1 [113–116].

C2H5OH + 3H2O ⌦ 2CO2 + 6H2, �H298K = 174 kJ.mol�1 (3.7)

3.2 Oxidation processes

3.2.1 Methane oxidation

Partial oxidation of methane (POM) is another process used to produce syngas and

is performed under oxygen flow as shown in Equation 3.8. Full oxidation of methane

(FOM) shown in Equation 3.9 is a competitive mechanism that produces steam and

CO2 and facilitates reforming. The oxidation has to be run at high temperatures,

above 1000�C, however, when using a proper catalyst the process occurs at 700�C.

The oxidation is then called Catalytic Partial Oxidation - CPOX [107, 117].

CH4 +
1

2
O2 ⌦ CO + 2H2, �H298K = �36 kJ.mol�1 (3.8)

CH4 + 2O2 ⌦ CO2 + 2H2O, �H298K = �802 kJ.mol�1 (3.9)

Furthermore, due to its electrocatalytical environment, reactions such as Partial

electrochemical oxidation of methane - PEOM - (Equation 3.10) or even Full electro-

chemical oxidation of methane - FEOM - (Equation 3.11) can take place at anode
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triple phase boundaries (TPB’s) sites of an SOFC by influence of the ionic flow of

oxygen ions arriving from the electrolyte [118, 119].

CH4 +O2� ⌦ CO + 2H2 + 2e�, �H298K = �36 kJ.mol�1 (3.10)

CH4 + 4O2� ⌦ CO2 + 2H2O + 8e�, �H298K = �802 kJ.mol�1 (3.11)

Electrochemical oxidation takes place at higher currents, however, hydrocarbon

flow must be kept under close control to avoid fuel slip. As SOFCs operate at high

temperatures they have the advantage of fuel flexibility due to being able to perform

MSR internally. Table 3.1 compares some physical properties of hydrogen, methane

and ethanol, considered as SOFC fuels.

3.2.2 Ethanol oxidation

Catalytic partial oxidation of ethanol - CPOXe - has also been investigated for

hydrogen production and is depicted in Equation 3.12. Ethanol’s POX reaction

works with humidified ethanol and a oxidising agent, generally oxygen.

C2H5OH + 2H2O +
1

2
O2 ⌦ 2CO2 + 5H2, �H298K = �68.2 kJ.mol�1 (3.12)

Full electrochemical oxidation of ethanol (FEOE) is virtually feasible - as in

Equation 3.13 - however, given that ethanol decomposition will occur, provided the

high temperatures of operation, it can be considered that its sub-products will be
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mostly methane, hydrogen, carbon oxides, ethane and ethylene.

C2H5OH + 6O2� ⌦ 2CO2 + 3H2O + 12e� (3.13)

Considering the effects of high temperature, when using anhydrous ethanol di-

rectly, the products of its decomposition are mainly methane, carbon oxides, hy-

drogen and undesired C2 hydrocarbons that can easily crack into carbon rich com-

pounds. Therefore, regarding SOFC operation, the intermediate decomposition of

ethane (Equation 3.14) and ethylene (Equation 3.15) are also pathways to be avoided

[120].

C2H6 ⌦ 3H2 + 2C (3.14)

C2H4 ⌦ 2H2 + 2C (3.15)

However, instead of promoting the decomposition of ethane and ethylene, the

electrochemical oxidation is also feasible as shown in Equations 3.16 and 3.17 [120].

C2H6 +
7

2
O2� ⌦ 2CO2 + 3H2O + 7e� (3.16)

C2H4 + 6O2� ⌦ 2CO2 + 2H2O + 12e� (3.17)

Concerning C2 hydrocarbons or alcohols, it has to be taken into account that C-C

bonds are easier to break than C-H bonds. Therefore, C-C bond split will probably
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Table 3.1: Fuels physical properties [121].

Properties H2 CH4 C2H5OH
Molecular Mass (g/mol) 2.01 16.04 46.07
Density (g/l) 0.09 0.72 0.79
Energy Density (kWh/kg) 33.30 13.90 6.61
Melting Point (�C) -259.20 -184.10 -114.0
Boiling Point (�C) -252.80 -164.10 78.37
Ignition Temperature (�C) 571.00 632.00 425.00

occurs first, which leads to the conclusion that in C2 molecules there will be a lot

of different radicals within the reaction which makes it very complex to understand.

By observing the properties it is noted that methane represents a good choice of

fuel especially for being a symmetrical molecule with a decent energy density.

Considering the Methane Electrochemical Full Oxidation, the elementary steps

that take place before the balanced overall Equation 3.11 are depicted in Equations

3.18 to 3.27. The denotation “*” means a free catalytic site whereas “X*” means

that a certain compound “X” is adsorbed over a catalytic site.

It can be noted that hydrogen bonds splitting and subsequent reaction with

oxygen ions occurring when molecules are adsorbed over catalytic sites - Equations

3.18 to 3.24-

2CH4 + 4⇤ ⌦ 2CH3 ⇤+2H⇤ (3.18)

2CH3 ⇤+2H ⇤+O2� ⌦ 2CH3 ⇤+H2O + 2e� (3.19)

2CH3 ⇤+2⇤ ⌦ 2CH2 ⇤+2H⇤ (3.20)
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2CH2 ⇤+2H ⇤+O2� ⌦ 2CH2 ⇤+H2O + 2e� (3.21)

2CH2 ⇤+2⇤ ⌦ 2CH ⇤+2H⇤ (3.22)

2CH ⇤+2H ⇤+O2� ⌦ 2CH ⇤+H2O + 2e� (3.23)

2CH ⇤+2⇤ ⌦ 2C ⇤+2H⇤ (3.24)

After hydrogen splitting, the electrocatalyst has to provide adequate ability to

facilitate carbon oxidation as seen in Equations 3.25 to 3.27, promoting full oxidation

and thus avoiding the deactivation by any remaining carbon over the microstructure.

2C ⇤+2H ⇤+O2� ⌦ 2C ⇤+H2O + 2e� (3.25)

2C ⇤+2O2� ⌦ 2CO ⇤+4e� (3.26)

2CO ⇤+2O2� ⌦ 2CO2 + 4e� (3.27)

The same deduction can be held on ethanol’s Full electrochemical oxidation over-
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all reaction in Equation 3.13, through Equations 3.28 to 3.37. The C-H splitting

bond is depicted from Equations 3.28 to 3.34.

C2H5OH + 2⇤ ⌦ C2H5 ⇤+OH⇤ (3.28)

C2H5 ⇤+2⇤ ⌦ CH3 ⇤+CH2⇤ (3.29)

CH3 ⇤+2⇤ ⌦ CH2 ⇤+H⇤ (3.30)

CH2 ⇤+H ⇤+OH⇤ ⌦ CH2 ⇤+H2O + 2e� (3.31)

2CH2 ⇤+2⇤ ⌦ 2CH ⇤+2H⇤ (3.32)

2CH ⇤+2H ⇤+O2� ⌦ 2CH ⇤+H2O + 2e� (3.33)

2CH ⇤+2⇤ ⌦ 2C ⇤+2H⇤ (3.34)

After C-H splitting and hydrogen oxidation as product, it can be seen the carbon
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formation and subsequent removal by oxidation from Equations 3.35 to 3.37

2C ⇤+2H ⇤+O2� ⌦ 2C ⇤+H2O + 2e� (3.35)

2C ⇤+2O2� ⌦ 2CO ⇤+2e� (3.36)

2CO ⇤+2O2� ⌦ 2CO2 + 4e� (3.37)

3.3 Carbon deposition

One of the main issue of using direct hydrocarbon or carbonaceous fuels into SOFCs

fuel stream feeding is carbon bond over the catalyst surface, which deactivates it.

CHEN et al. [122] were able to theoretically determine the amount of carbon de-

posited onto a Ni-YSZ catalyst surface by using thermochemical calculations of free

energy minimisation. Several syngas compositions were simulated and the results

can be confirmed by the C-H-O phase diagram. Table 3.2 summarises the reactions

explained above, and Figure 3.1 shows the ternary phase diagram indicating the

carbon deposition area and all reactions listed in Table 3.2. The phase analysis

clarifies that reactions 8, 9, 12 and 13 are the ones that should be avoided.

Although nickel is a great catalyst to be used in SOFC anodes, it also promotes

massive carbon formation when hydrocarbons are being used as fuel. Moreover some

other contaminants such as H2S or HCl can promote the degradation of nickel-based

catalysts whilst using hydrocarbons as fuels [123, 124]. KIHLMAN et al. [125] report

that in case of an SOFC system fed with natural gas, the carbon formation highly

depends on temperature, feed gas composition and the catalyst that is being used.
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Table 3.2: Reactions path of methane and ethanol decomposition.

Case # Description Reaction
1 Methane Steam Reforming CH4 +H2O ⌦ CO + 3H2

2 Methane Dry Reforming CH4 + CO2 ⌦ 2CO + 2H2

3 Methane Full Oxidation CH4 + 2O2 ⌦ CO2 + 2H2O
4 Methane Partial Oxidation CH4 +

1
2O2 ⌦ CO + 2H2

5 Hydrogen Oxidation H2 +
1
2O2 ⌦ H2O

6 Carbon Monoxide Oxidation CO + 1
2O2 ⌦ CO2

7 Water-Gas Shift CO +H2O ⌦ CO2 +H2

8 Methane Cracking CH4 ⌦ C + 2H2

9 Boudouard Reaction 2CO ⌦ C + CO2

10 Ethanol Steam Reforming C2H5OH + 3H2O ⌦ 2CO2 + 6H2

11 Ethanol Full Oxidation C2H5OH + 2H2O + 1
2O2 ⌦ 2CO2 + 5H2

12 Intermediate Decomposition of Ethane C2H6 ⌦ 3H2 + 2C
13 Intermediate Decomposition of Ethylene C2H4 ⌦ 2H2 + 2C

Figure 3.1: C-H-O ternary phase diagram with molar composition for each reaction
in Table 3.2. (Adapted and reprinted with permission from Elsevier - Ref. [122])

In addition, at temperatures below 700�C carbon can be formed either from methane

decomposition (Equation 3.4) if the steam to carbon ratio (S/C) is low, reduction

of carbon monoxide (Equation 3.5), or by the Boudouard reaction (Equation 3.6).

The morphology of the formed carbon depends highly on the operating tem-

peratures and the amount of steam in the fuel composition. KISHIMOTO et al.

[126] have shown in their work that at a S/C above 2, no carbon formation is ob-

served. On the other hand, ratios below 0.5 has damaged anode microstructure and

current collector. Experiments and thermodynamical calculation show that carbon

deposition does not occur when using S/C ratios above 1.5 [127–129]. However,
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high steam content can cause other problems such as nickel oxidation and issues

with water management [130]. ZHAN and BARNETT [131] present an anode with

a Ni-YSZ layer covered by Ru-CeO2 nanoparticles that is able to crack methane.

Therefore the product that reaches the anode TPB will be a H2 and CO rich gas.

Carbon is originally formed in the form of whiskers below 600�C, however, above

this temperature pyrolitic carbon may appear [126]. After a few hours of growth,

carbon may encapsulate the nickel particles and fill the voids between them. There-

fore, carbon may be able to diffuse through the nickel particle bulk and start to

grow as nano fibres as seen in Figures 3.2a and 3.2b [132] that will destroy particle

structure and delaminate anode layers.

(a) (b)

Figure 3.2: (a) and (b) Carbon nano fibres formation. (Reprinted with permission
from Elsevier - Ref. [132])

Although thermodynamic calculations ought to be able to predict carbon depo-

sition, real applications show some deviance from theory due to local heterogeneity

of gas compositions and operating conditions, thus making experimental validation

necessary [133, 134]. Also, it is still an issue to predict the type of carbon formed.

Some authors have reported a broad range of conditions which are able to change

the type of carbon formed [135, 136].
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3.4 Anode poisoning by sulphur

Many H2S based contaminants present in fuels can easily degrade Ni-based electro-

catalysts. Such contaminants chemisorb onto the catalyst surface thus covering and

deactivating it [137, 138]. KUROKAWA et al. [139] present in their work that CeO2

added by nitrate aqueous solution can help to mitigate this problem. Yet sulphurous

compounds can be formed within the catalyst metal, de-activating it. Formation of

Ni3S2 is one example when nickel based anodes are concerned. The most significant

evidence of sulphur poisoning is the cells voltage drop [140].

The formation of such molecules or intermediate compounds is highly dependent

on temperature and H2/H2S molar ratio. CHENG et al. [141] have calculated the

Ni-S phase diagram as shown in Figure 3.3 via Density Functional Theory (DFT).

Figure 3.3: Ni-S phase diagram calculated by DFT. (Adapted and reprinted with
permission from the Royal Society of Chemistry - Ref. [141])

Sulphur compounds generally interact with the nickel surface in two manners:
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chemisorption (Equation 3.38) or sulfidation (Equations 3.39) [142].

H2S(g) ⌦ HS(ads) +H(g/ads) ⌦ S(ads) +H2(g/ads) (3.38)

Ni+H2S ⌦ NiS +H2 (3.39)

3Ni+ xH2S ⌦ Ni3Sx + xH2 (3.40)

At low H2S concentration and in a range of temperature from 700 to 800�C,

Equation 3.38 should occur more often, however, at low concentrations, Equations

3.39 and 3.40, may be dominant, as literature shows [105, 143–145]. Also, the elec-

trochemical effect plays a significant role on sulphur poisoning [146]. As described

in Equation 3.41, gaseous H2S can be split and adsorbed on nickel sites (*) subse-

quently reacting with oxygen ions (Equation 3.42). Although this electrochemical

reaction produces electrons and water, sulphur seems to remain adsorbed on the

nickel surface.

H2S(g) + 2⇤ ⌦ 2H ⇤+S⇤ (3.41)

2H ⇤+S ⇤+O2� ⌦ H2O(g) + S ⇤+2e� (3.42)

Equations 3.43, 3.44, 3.45, 3.46 and 3.47 summarise the electrochemical/chemical

phenomena that can occur concerning nickel coverage by sulphur compounds [147].
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Equation 3.43 and 3.44 show that the oxidation of H2S compounds leaves free sulphur

dioxide that in spite of producing current might poison the anode material.

H2S + 3O2� ⌦ H2O + SO2 + 6e� (3.43)

H2S +O2� ⌦ H2O + S + 2e� (3.44)

On the other hand, Equation 3.45, depicting thermal decomposition of H2S,

shows that the products (H2 and S) are electrochemically oxidised - Equations 3.46

and 3.47 - also leaving sulphur dioxide.

H2S ⌦ H2 + S (3.45)

S + 2O2� ⌦ SO2 + 4e� (3.46)

H2 +O2� ⌦ H2O + 6e� (3.47)

There is a vast literature about SOFC poisoning by various elements and com-

pounds [148–151]. In fact YOKOKAWA et al. [152] explains that in addition to

fuel impurities, the use of inexpensive raw materials to produce the SOFC may also

cause poisoning. SASAKI et al. [153], performed a series of electrochemical and

thermomechanical experiments to describe nickel catalyst deactivation by sulphur

adsorption in relatively low concentrations with chlorine poisoning. It was mainly
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observed the sublimation of NiCl2(g) whilst a partial recovery of cell voltage drop

was also distinguished.

3.5 Types of Anodes

3.5.1 Nickel-based anodes

Nickel phase coarsening is the most common phenomenon responsible for decreas-

ing anode TPB length thus increasing cell overpotential [154, 155]. The metallic

phase coarsening causes pores to narrow which again decreases the available surface

area for reaction. At the same time the growth of the particles reduces the overall

available TPB length and gradually interrupts the current flow pathways in the an-

ode. Due to these phenomena, the cermet structure creates a phase dispersion on

the ceramic backbone which anchors metallic atoms. Therefore, metal diffusion is

reduced thus decreasing the grain growth rate. In addition, the mixture between

the electrocatalyst and the ceramic (e.g. YSZ), increases ionic conductivity and the

TPB length, and improves electrolyte-anode thermal compatibility [2, 123].

Nickel is an excellent catalyst for hydrogen and methane fuels. Therefore, nickel

cermets are the most widely used materials for SOFC anodes. These compounds

certainly present one of the best electrochemical performances in long term oper-

ation. Nevertheless, Ni-YSZ presents a high carbon activity under typical SOFC

operating temperatures and pressures, causing nickel particles to cover with carbon

and deactivate. It can be shown from reaction equilibria, that adding the right

amount of water to the fuel mixture suppresses this effect [156, 157].

The complexity of controlling the cermet microstructure has been a challenge

over the last 10 years of development. Parameters such as porosity, tortuosity, phase

continuity, and TPB distribution through the anode bulk are key to minimising

cell polarisation [158]. A number of papers have described the complex process of

hydrogen oxidation over the Ni-YSZ surface [159, 160]. There are several of papers

in the literature concerning long term operation of nickel based SOFC anodes [161–
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168]. A number of works in the literature state that the required lifetime for state-

of-the-art SOFC devices is over 40,000 hours for stationary applications, and over

5,000 hours for transportation application [169–171].

Degradation phenomena could be tied to a series of events such as material

transport (coarsening - as aforementioned and depicted in Figure 3.4), deactivation

by surface covering as shown in Figure 3.5, and thermomechanic events (stress relief

by crack formation) as shown in Figure 3.6 [169, 172].

(a) (b)

Figure 3.4: (a) Microstructure of anode cermet after reduction and (b) after an
exposure for 4000 h in Ar/4% H2/3% H2O at 1000�C . (Reprinted with permission
from Elsevier - Ref. [163])

(a) (b)

Figure 3.5: (a and b) Transmission electron micrographs of the anode operated with
syngas. (Reprinted with permission from Elsevier - Ref. [122])
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(a) (b)

Figure 3.6: Electrolyte cracking (a) cross section and (b) surface. (Reprinted with
permission from Elsevier - Ref. [173])

It is very important to determine the proper heat treatment of the electrocatalyst

precursor powders so as to avoid sintering shrinkage. Those treatments are denoted

powder coarsening and they are applied to control parameters such as powder par-

ticle size distribution. It is common to analyse a particle size histogram and realize

that its distribution has become narrower or even has turned from a multi-modal

to a uni-modal type as the powder was properly calcined. Some studies have been

carried out so far regarding the influence of powder coarsening on polarisation effects

[154, 174, 175].

PRASAD et al. [176] were able to synthesise a Ni-CGO based material by the

glycine-nitrate-process which was tested under steam reforming conditions. They

observed that the reforming activity decreased whilst in steam rich condition and

evidenced, by TEM, that nickel particles had increased drastically in size, from a 5

to 10 nm range to 10 to 20 nm. On the other hand, when steam concentration was

kept low, no increase in particle size was experienced thus no decrease on reforming

activity. Further work, [177] has demonstrated higher steam reforming activity for a

Ni-Ce0.75Zr0.25O2-based anode. Although the material behaves quite similarly with

respect to the amount of steam used, its reforming activity was still higher than

that of Ni-CGO.

WU et al. [178] operated a modified Ni-YSZ cell with dry methane for over

100 hours with negligible carbon deposition. They reported that the impregnation
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with Ag particles, by wet impregnation of an AgNO3 solution, was able to suppress

carbon formation. Their cells were operated at over 500 mW.cm-2 of power density

with dry methane as fuel.

FARRELL and LINIC [179] compared a Ni-YSZ anode with their Sn/Ni-YSZ

catalyst under operation with anhydrous ethanol as fuel for over 20 hours and ob-

served an increase in power density as well as great stability over time. Ni-Sn

alloys have also shown to decrease the carbon deposition tendency as compared to

monometallic Ni particles.

Furthermore, works in the literature reports Ni-YSZ cermets operating success-

fully with hydrocarbons when copper particle are incorporated to the microstructure.

PARK et al. [180] have managed to fabricate a Ni-YSZ anode supported cell by tape

casting and introducing copper particles by electroplating. Their cells were able to

operate under methane at 700�C resulting in about 240 mW.cm-2 of power density,

with less carbon deposition than with the Ni-YSZ cells in the same test.

TROSKIALINA et al. [181] have presented the work on Ni-YSZ anodes upon

Sn infiltration for enhanced durability of cells working on biogas. After 22 hours of

operation on biogas the doped cell showed 4.5 times higher performance than the

undoped Ni-YSZ benchmark and carbon was not found on the doped cell whereas

for the undoped one 0.17 mg/cm2 was observed by TPO analysis. Even though

Sn has a low melting point (231.9�C) the association and calcination over nickel

particle surfaces promotes the formation of compounds such as Ni3Sn, Ni3Sn2 and

Ni3Sn4. In addition to having higher melting point (from 800 to 1280�C), those

alloys are responsible for enhancing the carbon oxidation capacity thus augmenting

coking resistance.

Furthermore, there are other works on nickel-based anodes incorporated with

various metal loads aiming to suppress coking whilst using carbonaceous fuels. NI-

AKOLAS et al. [182] report the incorporation of Au and Mo into a Ni-GDC anode.

The conclusions were that Au increases the H2 and CO selectivity of the converted

products, the incorporation of Mo does not represent much difference in performance
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from the conventional Ni-CGO, however, the association of Au-Mo into Ni-GDC

seems to play a synergistic role enhancing the desired selectivity and suppressing

coking by a factor of half. Results for SOFC long-term operation with Au-infiltrated

cells has also shown to be promising keeping cells voltage as the fuel stream switched

from hydrogen to methane and steam [183–185].

Silver has been shown to be a suitable catalyst for CO oxidation thus diminishing

the effects of coking. There are works in the literature that report decreasing of

coking events by factors of 3 to 4 when Ag and Cu were added to the Ni-YSZ in

comparison with cells with addition of Co and Cu [186–189].

3.5.2 Copper-based anodes

Copper has been used in SOFC anodes to enhance electronic conductivity. Yet, since

it has a good activity to oxidise carbon, the association of copper with other known

catalysts such as ceria has been tested as promising lately [190]. MCINTOSH et al.

[191] and LU et al. [192] report copper’s ability to facilitate carbon oxidation and

in the mean time enhancing the electronic conductivity of the anode material.

Therefore, copper is used in anodes for direct oxidation of hydrocarbons without

too much danger of coking and clogging. Prior carbon films formed between ceria

and copper are known to enhance electrical conductivity serving as a bridge for

electrons to flow. Cu-CeO2 anodes have shown to operate better with CO rich

fuels than nickel based cermets. Results with syngas and dry H2 are quite similar

regarding Cu-CeO2 [190] anodes.

Due to copper’s low melting point (1086�C) it is not possible to sinter copper-

based materials at high temperatures. Thus in case that it needs to be mixed with an

electrolyte material such as YSZ it won’t be possible to co- sinter them. The solution

to this problem are impregnation methods. The impregnation consists basically in

incorporating a metal load by adding an aqueous solution of its nitrate onto a porous

electrolyte matrix [193, 194]. As the precursor nitrate finds itself solved into water,

the resulting metal particles are highly dispersed through the electrolyte porous
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microstructure, forming the electrode and through the dispersion showing higher

activities. Considering copper, it is common to have an anode matrix such as ceria,

both undoped or doped, and impregnate it with copper.

AZZOLINI et al. [195] fabricated a tubular anode supported cell in which the an-

ode was composed of a Cu2O-GDC cermet to be used for intermediate temperatures.

They concluded that a single step co-sintering process was successfully performed

whilst using sintering aids such as Li2O that was used to dope the GDC electrolyte.

3.5.3 Perovskite-based anodes

A variety of perovskite and double-perovskite materials are being developed to avoid

sulphur poisoning in SOFCs anodes. In addition, as SOFC tend to operate at

relatively high temperatures (> 600�C), there is a common pursuit on substituting

metal catalysts by ceramic oxides thus reducing depletion by coarsening [26, 196].

Perovskites based on chromite and titanate such as (La1-xSrx)0.9Cr0.5Mn0.5O3-d

and La-substituted SrTiO3, respectively, are also being used as anodes in SOFCs.

Although their electrical conductivities are not as high as nickel or copper-based

anodes, the so called double-perovskite materials such as Sr2MMoO6 (M = Mg, Mn,

Fe, Co, and Ni) are being investigated, presenting suitable results operating either

with hydrogen or methane [196].

Lanthanides-based perovskites such as LaAlO3 whilst properly doped at B-sites

(e.g. by Al) find themselves highly electrical conducting and possess high catalytic

activity as well. A-sites strongly influence the oxygen stoichiometry [197, 198].

KIATKITTIPONG et al. [199], MOE et al. [200, 201], TAGAWA et al. [202] discuss

all properties related to electrocatalytic oxidation activity, thermal stability and

chemical compatibility with the YSZ electrolyte in their work.

SrMoO3 perovskites have shown one of the greatest electrical conductivities

among the oxides whilst doped with trivalent ions such as Cr or Fe on the B-site, thus

creating a non-stoichiometry [203, 204]. Therefore high conductivities regarding this

type of material [205] such as 104 S.cm-1 can be achieved.
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KOLOTYGIN et al. [206] evaluated a series of LaCrO3, La(Ti,Mn)O3 and

Sr(Nb,Mn)O3 perovskite-based anodes in terms of their electrical conductivity in

dependence of oxygen partial pressure, reducibility, and chemical contribution to

thermal expansion. Although anode overpotentials were still higher than for Ni-

based anodes as shown in their work, important conclusions regarding electrochem-

ical activity and conductivity were drawn.

YOO et al. [99] achieved good results using dry methane as fuel directly into

their (La0.2Sr0.8Ti0.98Co0.02O3)-GDC(Gd0.2Ce0.8O2-d) anode cells. Maximum power

density reached about 197 mW.cm-2 showing low levels of carbon formation whilst

a Ni-GDC control anode had massive coke deposition.

3.5.4 Ceria-based anodes

As a mixed ionic-electronic conductor (MIEC) CeO2 has shown to be a suitable

alternative to be used as anode material in SOFCs. In addition, Ceria also presents

a suitable catalytic activity to split C-H bonds and to promote further carbon ox-

idation being thus adequate to serve as anode material in which the fuel stream

is made of carbonaceous gases. Yet ceria has been successfully associated with a

variety of other compounds such as copper or cobalt.

Ceria shows reasonable electronic conductivities (1 S.cm-1) that can be even

increased by adding the previously mentioned metals. Ceria’s ionic conductivity

can be controlled by properly adding acceptor dopants such as CaO, Y2O3, GdO3,

and Sm2O3 [87–92].

Cu-CeO2 has been produced successfully by the wet impregnation method.

Those anodes have shown high resistance to sulphur poisoning and carbon depo-

sition [207, 208].

YE et al. [94] have demonstrated progress on developing Cu-CeO2 anodes. In

their work they have produced a Cu-CeO2-ScSZ anode to run on ethanol at temper-

atures of 750 and 800�C reaching over 400 mW.cm-2 of power density. Their cells

were able to operate without traces of carbon deposition [94, 95].
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VENÂNCIO and MIRANDA [93] synthesised a CeO2-Al2O3 based material to

be used as functional anode in SOFCs. In further work [209, 210] a comparison

was made operating a Ni-YSZ and Cu-CeO2-Al2O3-YSZ anode directly fuelled by

ethanol showing that whilst the former degraded after a few hours of operation, the

latter was able to operate for over 200 hours. Results can be seen in Figure 3.7

[210]. CORALLI et al. [211], TORRES et al. [212] worked on ethanol’s balance of

plant and have been developing optimising strategies for operational parameters in

such plants.

(a) (b)

(c) (d)

Figure 3.7: Ni-YSZ cell operated with ethanol (a) at 750�C and (b) 950�C - Cu-
CeO2-Al2O3 cell operated with ethanol (c) at 750�C and (d) at 950�C. (Reprinted
with permission from Elsevier - Ref. [210])

Other work has been able to present excellent results by adding cobalt to ceria-

based materials to be used as anode for the direct use of methane [96–98]. In such

anodes, LEE et al. [96] demonstrated the ability of copper to prevent the formation

of carbon fibres on the cobalt surface. Cobalt in itself shows high activity to form
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carbon, though. The results show that on a sample with the total metal loading

composed of cobalt, carbon deposition amounted to over 200% wt. On the other

hand, on those samples that possessed 10% wt. of copper and 90% wt. of cobalt,

carbon deposition was about 5% wt. [96].

In further work, LEE et al. [97] demonstrated that their Cu-Co anode could

operate on methane for over 500 hours keeping its electrical potential around 0.6 V

with power density over 200 mW.cm-2. ESCUDERO et al. [100] produced a MoNi-

Ce anode by co-precipitation synthesis method and ran their LSGM electrolyte

supported cell with hydrogen and methane in a range of temperatures from 750 to

850�C. They reported values higher than 350 mW.cm-2 for maximum power density

whilst operating at 850�C with methane. Much effort has been put into cobalt

incorporation on a variety of anode materials.

FUERTE et al. [98] synthesized a Cu-Co-CeO2 anode based material by the co-

precipitation method obtaining 50 mW.cm-2 of power at intermediate temperatures

(700�C) whilst operating with synthetic biogas (CH4 = 50-70%, CO2 = 25-50%,

H2 = 1-5%, N2 = 0.3-3%). Their SOFCs were tested under a H2S-rich atmosphere

ranging from 300 to 1000 ppm and has shown to perform around 180 mA.cm-2

over 70 hours. Scanning electron microscopy and energy dispersive spectroscopy

were performed unveiling that there was no sign of carbon deposition within the

microstructure. GROSS et al. [104] produced a Ce-Cu-YSZ anode by impregnation

and incorporated cobalt by electrodeposition. Their work presented around 120

mW.cm-2 at 900�C running with hydrogen as fuel.

In Table 3.3 a variety of SOFCs anodes is listed and sorted by electrical conduc-

tivities.
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Table 3.3: List of anode materials sorted by conductivity.

Composition Electrical Conductivity (S.cm-1) Operation Temperature (�C) Carbon Coking References

La0.8Sr0.2Cr0.95Ru0.05O3 0.6 (800�C) 900 No [213]
La1-xSrxCr1-yMnyO3 2.4 (950�C) 950 No [214]
Sr0.88Y0.08TiO3 64 (800�C) 900 - 1000 —– [215]
Ni-YSZ 250 (800�C) 750 - 1000 Yes [216]
SrLaTiO2 360 (800�C) 900 No [157]
Sr2Mg2-xMoO6 450 (800�C) —– —– [217]
Ni-SDC 573 (800�C) 600 - 800 Yes [216]
Cu-CeO2/Ni-YSZ 600 (800�C) —– No [218]
Ni-GDC 1070 (800�C) 600 - 800 Yes [157, 219]
Cu-CeO2 5200 (800�C) 800 - 950 No [220, 221]
Ni-Cu/SDC 6000 (800�C) —– Yes [222]
Cu-GDC 8500 (800�C) —– No [223]

3.6 Materials selection - Anodes for carbonaceous

fuels

Using a simple approach to justify materials selection through Ohm’s law, it can be

said that:

V = ⇢.
L

A
.I (3.48)

or even

V =
1

�
.
L

A
.I (3.49)

Considering electric current represents the amount of charge per second, it fol-

lows:

I =
Q

�t
(3.50)
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Further, assuming Equation 1.11,

V =
n

t.�
.
F.e.L

A
(3.51)

In which “F ” is the Faraday’s constant, “e” is the number of electrons produced

by mol of fuel oxidised, “L” is a length in which electrons flow and “A” is the cross

section area. In order to simplify, (F.e.L/A) can be treated as a single constant “C”.

Furthermore, considering that n/t will be the amount of electrons available from

the electrochemical oxidation of methane and thus a function of its conversion and

selectivity to H2 and CO, n/t may be re-written as:

n

t
= ṅCH4 .YH2+CO (3.52)

In which ṅCH4 is the molar flow of methane in time, and YH2+CO is the methane

conversion yield. The yield is given by the methane conversion percentage times the

H2 and CO selectivity:

YH2+CO = CCH4 .SH2+CO (3.53)

Thus finally:

MV = C.
ṅCH4 .YH2+CO

�
(3.54)

The ratio MV represents the amount of fuel that has to be available to generate

a certain amount of current that a certain material is able to carry, or vice-versa.

In other words, it represents the limit between current physical transport and fuel

utilisation kinetics. By plotting these contributions in a chart it is possible to select
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the materials that provide higher yields of fuel selectivity and suitable electrical

conductivity to serve as anode.

Figure 3.8: Materials Selection - Simplified Bubble chart. (Data to generate the
chart is a result of approximate ranges found in the literature. Perovskite-based
[26, 206, 224, 225], ceria-based [226–228], nickel-based [26, 222, 229, 230], copper-
based [157, 231, 232] and cobalt-based [98, 233].)

Observing the graph in Figure 3.8, conclusions regarding the variables cited

might be drawn. For example, although nickel-based anodes seem to be a more

suitable choice it has to be taken into account that almost all these types of mate-

rials present massive coke formation during direct utilisation of hydrocarbon fuels.

The alternatives found in the literature about nickel-based anode operating with

carbonaceous fuels are mostly related to reforming or oxidation thereby mixing the

fuel with oxidising agents so the carbon can be removed or even avoided [234–239].

Copper-based materials, on the other hand, present the highest conductivity val-
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ues though low activity for converting methane being, in general, a poor catalyst.

However, the activity of copper-based materials can vary substantially whilst asso-

ciated with oxides such as ceria. The strategy to avoid carbon deposition in this

case lies in the addition of copper that usually forms a thin film over the catalyst

that allows carbon to be oxidised easier [240, 241].

Ceria-based materials present great activity for methane conversion, as said, but

problems with low conductivity are to be taken into account. Again, the association

with materials such as copper have shown that those cermets can be very suitable to

be used as electrocatalysts in anodes. For the anodes composed mostly of ceria, the

main strategy is to have a catalyst less prone to carbon deposition or that facilitates

carbon oxidation by its enhanced oxygen storage capacity [242–246].

Perovskite-based materials, seem to be very promising as anodes for direct use

of methane. Those materials present a vast range of conductivity as well as high

activity for methane use. Since perovskites are oxygen deficient structures they have

the ability of storing/releasing oxygen, which facilitates carbon to be oxidised on

the catalyst surface [247–249].

Cobalt-based materials, are also an alternative of high catalysing activity that is

sometimes even comparable to nickel-based anodes. However, low conductivities are

generally found in the literature specially because these materials are characterised

in its oxidised state which hinders the electrical conductivity of them. Cobalt, as a

transition metal posses high activity such as nickel and when associated with other

rare-earth compounds may form oxygen deficient composites which also is used as

strategy to hinder coking [98, 233].

Table 3.4, compiles the information about types of anode materials and their

reported fuels in the literature, as well as the strategy used to avoid coking and/or

sulphur poisoning. It can be seen that when nickel is used, the main strategy is

to perform internal reforming by adding water or carbon dioxide through the fuel

stream. For the nickel-free materials the strategies lies in more robust solutions

such as the possibility to force carbon oxidation by forcing air into the anode, in
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the case of the perovskite materials or even facilitate the electrochemical oxidation

of the adsorbed carbon by using oxygen-deficient materials such as ceria or even

doped-ceria.

Therefore, with this data compilation one main conclusion is the necessity of

developing even more nickel-free materials to serve as adequate anode for SOFC

operating with carbonaceous fuels. The more obvious way towards this in our opin-

ion is the natural upgrades that ceria-based materials have been suffering over the

last few years provided the incorporation of different second phases such as copper,

cobalt, iron, zirconium and especially the alloying with YSZ, GDC and Alumina.

Table 3.4: List of anode by material type and the strategy to avoid microstructure
depletion.

Anode Material Carbon/Sulphur-content Strategy used to avoid coking Referencesfuels reported or sulphur poisoning

Nickel-based

Ni-YSZ Methane, Ethanol, Biogas, Internal reforming (steam and/or dry) [234, 236, 237]Syngas, Methanol

Ni-Cu-YSZ Methane, Ethanol Cu-rich facets inhibit carbon growth/ [240, 250]Internal reforming (steam and/or dry)

Ni-SDC Methane Internal reforming/Mixing with hydrogen/ [251]Coking was not supressed

Ni-GDC Methane, Ethanol, Syngas Internal reforming (steam and/or dry) [252, 253]

Ni-Sn Methane, Syngas, Biogas Modifying the catalytic nature [181]of nickel particle

Ni-Au-Mo Methane, Syngas, Biogas Modifying the catalytic nature [182]of nickel particle

Ni-Ag Methane, Syngas, Biogas Modifying the catalytic nature [186–189]of nickel particle

Perovskite-based

La0.8Sr0.2Cr0.98V0.02O3�� Methane, Propane Delay the kinetics of carbon formation/ [254]Air at the anode side to oxidise carbon

LaxSr1-xTiO3
Syngas/Sulphur-content Resistance to sulphur poisoning [255, 256]hydrogen

La1-xSrxVO3
Natural Gas/Sulphur-content Resistance to sulphur poisoning [257]hydrogen

SrMo1-xGaxO3�� Methane Facilitates carbon oxidation due to its [258]oxygen-deficient structure

LaAl0.5Mn0.5O3 Methane Facilitates carbon oxidation [120]

La1-xSrxCr1-yMnyO3 Sulphur-content hydrogen Resistance to sulphur poisoning [214]

Sr2FeNb0.2Mo0.8O6�� Methane Easily reoxidised when air is inputted [247]

Ceria-based

Ce0.75Zr0.25O2 Methane, Ethanol Facilitates carbon oxidation [120]

Ce1-xCaxO2�� Methane Facilitates carbon oxidation [259]

Cu-CeO2 Methane, Ethanol Facilitates carbon oxidation [94]

Cu-Fe-Ce0.9Gd0.1O2�� Methane Facilitates carbon oxidation [221]

Cu-CeO2/Al2O3 Methane, Ethanol Facilitates carbon oxidation [120, 260]

Co-Cu-CeO2-YSZ Carbon monoxide Facilitates carbon oxidation [101]

Co3O4-CeO2-CuO Methane Facilitates carbon oxidation [101]

Copper-based
Cu-YSZ Methane, Ethanol Facilitates carbon oxidation [261, 262]

Cu-CGO Methane, Ethanol Facilitates carbon oxidation [263]
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3.7 Conclusions

Today the state-of-the-art of SOFC operational viability and market introduction

relies on materials capable of using complex fuels such as methane or ethanol by the

simplest way such as direct utilisation, being able to eliminate all costly and time

consuming pre-reforming steps. Moreover, the abundance of methane-rich gases,

such as natural gas as well as biogases, on offer is another factor that plays in favour

of such efforts to these new materials developments.

As could be seen throughout this work, the ways towards feasibility of SOFCs

lie over the fact that they have to be able to operate with abundant fuels such as

carbonaceous sources of hydrogen. For that to happen, the requirement of avoiding

or even suppressing carbon deposition has be met. The nickel-based materials have

always showed to suit as the best catalyst for hydrogen and even for methane and

the possible solutions for decreasing carbon deposition in such cases seems to be in

the internal reforming aided by steam and carbon dioxide within the fuel stream.

Technically, ceria-based cermets or perovskite-based anodes seem to be playing

very well the role of direct carbonaceous fuels electrocatalyst, presenting reasonable

results concerning power density values, and facilitating further carbon oxidation.

Further oxides association such as ceria and metals (Cu, Co, Ni) are also promising.
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Chapter 4

Materials and methods

4.1 Electrocatalyst synthesis

The synthesis of the ceramic powders was performed via the amorphous citrate

method. Roughly, the process consists in dissolving the nitrates of each precursor

metal into de-ionised water and stabilising its metallic ions with proper amounts of

citric acid.

After that, the citrate-nitrate solutions are mixed all together and NH4OH is

added to the solution to neutralise its pH. The solution is then kept at 80�C and

under magnetic stirring producing a gel. Still under stirring, the temperature is

increased to 90�C to eliminate part of the volatiles. Finally, the synthesis product is

kept under atmospheric air at 200�C during 6 hours to produce the synthesis ashes.

Cerium (III) nitrate hexahydrate (MT-02), Cobalt (III) nitrate hexahydrate

(MT-04), and Copper (II) nitrate trihydrate (MT-05) were used as precursors. In

addition, Citric acid monohydrate (MT-03) was used. The pH was stabilized by

adding ammonium hydroxide (MT-01) whilst measured by a pH meter (EQ-06),

and kept under magnetic stirring (EQ-04), whilst the temperature was monitored

by a thermometer (EQ-15).

The whole process is depicted by the flowchart in Figure 4.1. Once the ashes
1Each material and equipment listed in the present work is detailed at the Appendix I and

sorted alphabetically in Tables 9.1 and 9.2, with reference codes MT-XX and EQ-XX respectively.
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were formed they were pulverised in an agate mortar with a pestle and then stored

in a glass recipient in the as-synthesised condition.

Figure 4.1: Flowchart of the amorphous citrate synthesis.

4.2 Electrocatalyst characterisation

4.2.1 X-ray diffractometry

The intensity of diffracted X-rays is counted by an X-ray detector as a function of

diffraction angle. Since the X-ray source emmitts a beam of known wavelength, the

caounting satisfies Bragg’s Law (Equation 4.1) [264]. In Figure 4.2 the planes of

diffraction are represented.

2.d0.sin✓ = n.� (4.1)

in which d0 is the distance between atomic planes, ✓ is the diffraction angle, n is

the order of reflection and � is the wavelength of the X-ray source.

Figure 4.2: Planes of diffraction - representation of Bragg’s Law.
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Therefore, it is very common to have the representation of Bragg’s law in terms

of plane spacing d rather than d0 in which d = d0/n that originates Equation 4.2.

Moreover, considering the Miller index (h, k, l), a relationship with plane spacing

can be established taking into account the space group of a given crystal. Table 4.1

shows the lattice parameters calculation for seven crystal systems.

2.d.sin✓ = � (4.2)

Table 4.1: Plane spacing relationship with lattice parameters for each crystal system.

Cubic 1
d2 = h2+k2+l2

a2

Tetragonal 1
d2 = h2+k2

a2 + l2

c2

Hexagonal 1
d2 = h2+hk2+k2

a2 + l2

c2

Trigonal 1
d2 = (h2+k2+l2)sin2↵+2(hk+kl+hl)(cos2↵�cos↵)

a2(1�3cos2↵+2cos3↵)

Orthorhombic 1
d2 = h2

a2 +
k2

b2 + l2

c2

Monoclinic 1
d2 = 1

sin2�

⇣
h2

a2 +
k2sin2�

b2 + l2

c2 �
2hlcos�

ac

⌘

Triclinic
1
d2 = [b2c2sin2↵h2+a2c2sin2�k2+a2b2sin2�k2+2abc2(cos↵cos��cos�)hk+2a2bc(cos�cos��cos↵)kl+2ab2c(cos�cos↵�cos�)hl]

V 2

in which V is the volume of a unit cell.

Crystallography studies have their origin in the observation of symmetrical min-

eral structures such as quartz, fluorite, pyrite, and corundum. Considering seven

crystal systems consisting of 14 Bravais lattices, 32 point groups on the basis of eight

symmetry elements, screw and glide reflection axis, the structures can be sorted into

230 space groups. The unit cell geometry, the Bravais lattices and their respective

representation symbol for each crystal system are shown in Table 4.2.

Taking into account the basic crystallography of the compounds and the exper-

imental data extracted from X-ray analysis it is possible to stochastically calculate

the lattice length and angle by adjusting peak shape and width as well as peak

relative scale. This technique is called the Rietveld refinement [265].

XRD analysis in this work was performed with a Bruker D8 diffractometer (EQ-

17). The 2✓ range was 10-90�, varying each 0.02�. Monochromatic radiation CuK↵
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Table 4.2: Crystal systems and Bravais lattices.

System Axial lengths and angles Bravais lattice Symbol

Cubic a = b = c , ↵ = � = � = 90�
Simple
Body-centered
Face-centered

P
I
F

Tetragonal a = b 6= c , ↵ = � = � = 90�
Simple
Body-centered

P
I

Hexagonal a = b 6= c , ↵ = � = 90� , � = 120� Simple P

Trigonal a = b = c , ↵ = � = � 6= 90� Simple R

Orthorhombic a 6= b 6= c , ↵ = � = � = 90�

Simple
Body-centered
Base-centered
Face-centered

P
I
C
F

Monoclinic a 6= b 6= c , ↵ 6= � = 90� 6= �
Simple
Base-centered

P
C

Triclinic a 6= b 6= c , ↵ 6= � 6= � 6= 90� Simple P

= 0.15418 nm with acceleration voltage of 40 kV and 30 mA current was used.

XRD was applied to all the produced powders both on their as-synthesised and heat

treated state, aiming to compare them and observe phase formation and crystalli-

sation. Rietveld refinement was performed over the raw data using FullProf R� Suite

software [266] to confirm the powder composition and calculate lattice parameters.

The background was described by a linear interpolation of pre-determined points

with refinable heights.

4.2.2 Thermogravimetric analysis

Thermogravimetric analysis - TGA - is a technique that consists of a continuous

record of mass changes of samples, whilst temperature is changed. The measure-

ments are made by a thermobalance. The graph produced is called a thermogram

or pyrolysis curve [267]

TGA analysis was taken over the synthesised powders in order to determine

the temperature of volatiles and nitrates evaporation as well as eventual oxides
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decomposition. A NETZSCH TG 209 F1 (EQ-14) was used ranging between room

temperature and 900�C with 10 �C.min-1 heating rate and 30 minutes dwelling at

900�C in air.

4.2.3 X-ray fluorescence

When a material is exposed to high energy X-rays or �-rays it emits secondary X-rays

(or fluorescent X-rays). Basically, when excited with enough energy to promote atom

ionisation, electrons are expelled from inner layers thus forcing electrons from higher

orbitals to take the spot of those at lower orbitals. This process releases energy

(photons of characteristic wavelength) that is then quantified by the spectrometer.

The counting of these emissions indicates statistically the chemical elements in the

sample [268, 269].

X-ray fluorescence was taken in a Bruker S8 Tiger XRF Spectrometer (EQ-19)

over pelletised powder samples which were pressed within 2 ton pressure within a

13 mm diameter die after being mixed with wax in a mass ratio of 5:1 for powder

to wax. XRF scanning was done during a 18 minutes scan.

4.2.4 Particle size distribution

For measuring the particle size distribution (PSD) of the powders a Mastersizer

2000 by Malvern (EQ-05) was used and the technique consists in measuring a laser

scattering occurring whilst the dispersed particles pass through a window.

Samples were prepared by dispersion of around 50 mg of powder in approximately

15 mL of de-ionised water. The solutions were sonicated for 30 minutes. Then each

solution was added to the equipment stirrer gradually until approximately 15% of

obscuration was achieved. The analysis was carried out in a stirring speed of 1,700

rpm.

62



4.2.5 Temperature-programmed reduction

Temperature-programmed reduction or TPR is a technique commonly used to de-

termine if an oxide catalyst has the ability of being reduced in hydrogen-rich at-

mosphere at given temperatures. Therefore, it is a powerful technique to compare

different materials giving their ability to absorb hydrogen.

Once the catalyst sample is placed inside the U-tube quartz reactor, the temper-

ature is increased and controlled. A hydrogen containing mixture, such as hydrogen-

nitrogen or hydrogen-argon is flowed over the sample whilst the outlet gas is moni-

tored by a thermal conductivity detector (TCD) or a mass spectometer [270].

TPR was performed on each produced powder using a Quantachrome ChemBET

Pulsar TPR/TPD equipment (EQ-08) that ranged from room temperature to 900�C,

stepping 5 �C.min-1 over approximately 20 mg of powder in a quartz reactor. The

gas mixture consisted of 5% H2 and balanced N2.

4.2.6 Electrical conductivity of the precursor oxides

Electrical conductivity tests were carried out on pellets. For pelletising, approxi-

mately 1 g of each powder type was uni-axially pressed in a 20 mm diameter cylin-

drical die, under 2.5 tons of charge, thus causing a stress of 19.5 MPa. After pressed,

the pellets were sintered in air at 1000�C for 2 hours.

For electrical measurements, the Van der Pauw method was used in which four

silver probes were pasted onto equidistant points of the pellet thickness axis as

shown in the scheme of Figure 4.3. Voltage was measured whilst a given charge

was applied throughout the inverse diagonal probes as depicted in Figure 4.3. The

resistance results were corrected (Rc) using the Van der Pauw geometry correction

in Equation 4.3 [271, 272].

Rc =
⇡.d

ln(2)
.R (4.3)

63



in which Rc is the corrected resistance, d is the pellet diameter and R is the

measured resistance.

Figure 4.3: Van der Pauw method simplified scheme.

4.3 Cell assembly

To assemble the cells their anode electrocatalysts were heat treated at 800�C for 2

hours in air after they were synthesised. The anode inks were prepared by mixing

30% in mass of powder with balanced Terpineol-based vehicle (MT-13). After mixing

it mechanically, the paste was roll milled for at least 10 minutes. The cathode ink

was prepared identically, using Strontium-doped Lanthanum Manganite - LSM -

(MT-11) commercial powder.

A buffer layer composed by 50% wt. of the electrolyte material (Sc0.10Ce0.01SZr)

MT-07 and 50% wt. of CeO2 was developed. The main idea was to enhance thermal

compatibility and anode anchorage over the electrolyte surface by using a mix of

anode/electrolyte components. The buffer layer ink was produced by roll milling

the electrolyte and CeO2 ensemble all together. This layer was then deposited by

screen printing onto 150 µm thick Scandium and Cerium doped Zirconia - ScCeSZ

(MT-06) electrolyte button supports and sintered at 1300�C for 2 hours.

The cathode layer was screen printed onto the other side of the electrolyte and

dried at room temperature in air for 30 minutes for the ink to accommodate over

the electrolyte surface homogeneously. Then the cathode was sintered at 1100�C

with 5 �C.min-1 during 2 hours as shown in Figure 4.4a. Analogously, the anode was
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screen printed over the buffer layer and sintered at 900�C with 5 �C.min-1 during

two hours as shown in Figure 4.4b. Finally, silver wires (MT-10) and grid (MT-09)

were placed with silver paste (MT-08) and cured at 150�C for 1 hour to serve as

current collectors.

(a) (b)

Figure 4.4: Graph of the (a) cathode and (b) anode sintering temperature versus
time.

4.4 Cell testing

Each cell was mounted on an alumina tube reactor and sealed with Thermicullit

866LS from Flexitallic as shown in Figure 4.5. Figure 4.5a presents the single cell

and the Thermicullit gaskets placed over the electrodes. Figures 4.5b and 4.5c show

the anode silver wires connected to the external circuit and the cell placed on the

top of the lower tube respectively. Yet Figure 4.5d shows the upper Alumina tube

resting over the cathode side and the connection of the cathode silver wires to the

external circuit.

After mounting, the anode was reduced at a high temperature reducing scheme

as shown in [273–275]. Temperature was increased by 5 �C.min-1 with 20 mL.min-1

nitrogen flow on the anode side. At 650�C hydrogen flow was opened (20 mL.min-1)

at the anode side whilst oxygen was fed to the cathode.

For the first set of cells, hydrogen was used as fuel from 750 to 850�C. Impedance

plots were also recorded at various temperatures. This procedure was then repeated
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(a) (b)

(c) (d)

Figure 4.5: Cell testing (a) sealing material over the each electrode, (b) connecting
anode silver wires, (c) placing the cell over the alumina tube and (d) resting the
upper tube over the cathode side and connecting the cathode silver wires.

for methane as fuel at 850�C. Electrochemical impedance spectroscopy was taken

from 1 MHz to 50 mHz around open circuit voltage with 10 mA of current amplitude.

For the second set of cells, hydrogen was used as fuel from 700 to 800�C and

the tests with methane were done from 775 to 825�C. Gas cromatograph injections

were done for tests run with methane. For each cell, the gas products at the out-

let were analysed in galvanostatic mode at 0, 10, 20 and 30 mA at 775, 800 and

825�C, respectively. For each injection the molar amount of unconverted methane

(nCH4(u)), ethylene (nC2H4), ethane (nC2H6), carbon monoxide (nCO), and carbon

dioxide (nCO2) were measured.

Therefore the molar amount of methane converted (nCH4(c)) is the molar sum of
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all products except the unconverted methane according to Equation 4.4.

nCH4(c) = nCO + nCO2 + 2(nC2H6 + nC2H4) (4.4)

The conversion (CCH4) is thus given by the converted methane over the total

inlet methane (nCH4(T )) as in Equations 4.5 and 4.6:

nCH4(T ) = nCH4(c) + nCH4(u) (4.5)

CCH4 =
nCH4(c)

nCH4(T )
(4.6)

The molar amounts of each product are therefore determined analytically. The

amounts of CO and CO2 produced under electric charge are normalised by the sub-

traction from the CO and CO2 generated at OCV thus assuming that it is generated

by eventual mixture with oxygen.

The cromatograph’s inlet flow in volume per time unit (�ic) in Equation 4.7 is

determined with a blank test. This test is performed by injecting a known flow of

methane directly into the cromatograph (�bc) and by measuring the molar amount

(nCH4(b)). Therefore, the amount measured over the known inlet flow is associated

with the known molar amount measured at each test.

Finally, using the percentage of methane converted (CCH4) the rate of conversion

in mol.s-1 can be estimated using Equation 4.8.

�ic =
nCH4(T )

nCH4(b)
.�bc (4.7)
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ṙCH4(c) = �ic.CCH4 .
⇢CH4

MMCH4

(4.8)

From Equation 4.8, ṙCH4(c) is the rate of methane conversion (in mol.s-1), ⇢CH4

is the density of methane (6.56⇥10-4 g.mL-1) and MMCH4 its molar mass (16.04

g.mol-1). The same accounting was done for CO and CO2 rates.

4.5 Cells post-mortem analysis

4.5.1 Raman spectroscopy

A light quantum (h.⌫0) hits a particle generating an elastic scatter, know as Rayleigh

scatter, with higher probability. However, the vibrational effects which molecules are

submitted to when excited, generate an inelastic scatter of lower probability, known

as the Raman scatter. This scattering phenomenon emits a quantum of h.⌫0 ± h.⌫s.

Since most molecules at room temperature are in their ground state, when excited

by a quantum source (h.⌫0) a quantum of energy of h.⌫0 � h.⌫s leaves the molecule.

This is known as Raman process [276]. The effect is illustrated in Figure 4.6.

Figure 4.6: Raman effect.

In this work, after cell operation, Raman spectroscopy was taken over their

surface with a 633 nm wavelength laser in a Renishaw inVia Raman microscope

(EQ-09). Samples were scanned at several spots (at least three) from 3200 to 100

cm-1 within 20 seconds acquisition time and 1% of the laser total power.
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4.5.2 Scanning electron microscopy

The image formation in scanning electron microscopy (SEM) depends on the inter-

action between the electron beam source and the material. The interactions can be

either elastic or inelastic.

The elastic effect occurs when the electrons from the incident beam find an atomic

nuclei or even electrons with similar energy from outer shells of the specimen atoms.

Elastic scattering usually present low energy loss and wide angles of deflection.

Furthermore, when the scattering angle is higher than 90�, the electrons are called

backscattered (BSE).

On the other hand, when the incident beam transfers substantial energy to the

atoms of the sample, the event is called inelastic scattering. The amount of energy

released during inelastic scattering is totally dependent on the electron-atoms bind-

ing energy. Therefore, when ionisation occurs due to electron excitations it promotes

a phenomenon called secondary electron (SE) emission. Those interactions aforesaid

are the main processes used to image the sample [277].

In addition, many other interactions such as Auger electrons, characteristic X-

rays as well as cathodoluminescence are generated. In Figure 4.7, it can be seen

the interaction of the electron beam with the sample can be seen, representing the

different depths at which the aforementioned phenomena occur [277].

Figure 4.7: Electron beam and its interaction with the specimen.

Usually, BSE occurs when the electrons leave the sample with energies greater
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than 50 eV and are very useful to image topography as well as differentiate atomic

number. If the specimen’s atom has a high atomic number, for instance, more

electrons will be backscattered thus producing higher signals. Therefore, if different

atoms are present, they will appear with different grey levels. Moreover, SEs are

classified as low-energy electrons (3-5 eV) and are very useful and widely used to

image the surface of the specimen [277].

Anode surfaces were submitted to scanning electron microscopy (SEM) to check

for microstructure morphology and conditions. SEM was performed using a JEOL

JSM-6460LV (EQ-12), with acceleration voltages ranging from 15 to 20 kV on a

backscattering electrons (BSE) detector. In addition energy dispersive X-ray spec-

troscopy (EDX) was used to determine phase distribution.

Due to the cells low active area plus the fact that current collectors are placed

over the surface with silver paste thus damaging the anode when removed, the

imaging was not done over the actual operated cells but with reduced and aged

anodes. For the ageing procedure, the anodes, previously screen-printed onto the

electrolyte, were placed in an alumina reactor tube and kept at 800�C whilst a

reducing atmosphere (15 mL.min-1 H2 + 15 mL.min-1 N2) filled the tube for over 50

hours.

4.5.3 Temperature-programmed oxidation

Temperature-programmed oxidation or TPO was used to assess carbon deposition

on the post-mortem cells. TPO works by introducing an oxygen-rich atmosphere

that oxidises eventual carbon deposits forming carbon oxides.

To perform TPO, a quartz reactor, previously cleaned by oxygen flushed at

800�C, was used to place the operated anode sample. After placing the quartz tube

inside the furnace, 20 % vol. oxygen in balanced nitrogen was opened. The outlet

gas was injected into a gas cromatograph from 200 to 850�C in which the molar

amounts of CO and CO2 were measured each 50�C step.

Before measuring TPO with the post-mortem samples, a validation test was done
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using graphite powder and the results of carbon oxidation can be seen in Figure 4.8

that shows the graphitic carbon being eliminated as CO and CO2 mainly from 550

to 800�C as expected [278].

Figure 4.8: Carbon oxidation profile over increasing temperature.

The tests with carbon black were done in pair and thus 2 procedures were run

with different amounts of graphite and the average results were then considered

in order to validate the setup. As comparison effect, eventual carbon deposits over

anode cells is oxidised in a different manner. Since carbon is adsorbed at the catalytic

sites of the anode, the oxidation does not take place as CO but mainly CO2 in two

basic steps described in Equations 4.9 and 4.10 in wich M represents a generic

metallic site in catalysis. Therefore, if high amounts of CO are being observed, it

means that significant amounts of carbon are being deposited through the anode

bulk [275].

M � C +
1

2
O2 �! M � C �O (4.9)

M � C �O +
1

2
O2 �! CO2 +M⇤ (4.10)
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Chapter 5

Electrocatalyst characterisation

For the three bimetallic compositions produced, the following amounts of nitrates,

water, citric acid and ammonium hydroxide used are shown in Tables 5.1, 5.2 and

5.3.

Table 5.1: Synthesis of the precursor cerium-rich powder.

Ce:Co:Cu - 2:1:1 Nitrate Solution Citric Acid Solution NH4OH [mL]Salt [g] DI Water [mL] Citric Acid [g] DI Water [mL]
Ce(NO3)3.6H2O 21.5582 12.3190 9.5434 4.9673

27.00Co(NO2)3.6H2O 7.2275 5.3936 4.7717 2.4836
Cu(NO3)2.3H2O 5.9906 4.3410 4.7717 2.4836

Table 5.2: Synthesis of the precursor cobalt-rich powder.

Ce:Co:Cu - 1:2:1 Nitrate Solution Citric Acid Solution NH4OH [mL]Salt [g] DI Water [mL] Citric Acid [g] DI Water [mL]
Ce(NO3)3.6H2O 13.5016 7.7152 5.9769 3.111

33.00Co(NO2)3.6H2O 18.1050 13.5110 11.9530 6.2220
Cu(NO3)2.3H2O 7.5036 5.4374 5.9769 3.1110

Table 5.3: Synthesis of the precursor copper-rich powder.

Ce:Co:Cu - 1:1:2 Nitrate Solution Citric Acid Solution NH4OH [mL]Salt [g] DI Water [mL] Citric Acid [g] DI Water [mL]
Ce(NO3)3.6H2O 13.3143 7.6082 5.8940 3.0678

33.00Co(NO2)3.6H2O 8.9273 6.6622 5.8940 3.0678
Cu(NO3)2.3H2O 14.7980 10.7240 11.7880 6.1356

To simplify the powders produced will be named cerium-rich, cobalt-rich and
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copper-rich for the molar ratios of Ce:Co:Cu 2:1:1, 1:2:1 and 1:1:2, respectively from

here onwards.

5.1 X-ray analysis

XRD analysis results are shown in Figure 5.1 in which the red-dashed lines are the

diffractograms of each electrocatalyst right after synthesis and the black continuous

lines are the patterns for the powders heat treated at 800�C during 2 hours.

The XRD results indicated the formation of CeO2, Co3O4 and CuO rather than

solid solutions. Solid solutions between CeO2 and Cu are not common [279], however

the phase diagram of CeO2-CoO shows that cobalt has a certain solubility into ceria’s

lattice [280]. The least state of copper oxidation (Cu2O) can also be spotted but for

the as-syntesised copper-rich powder.

Figure 5.1: X-Ray diffractograms for cerium-rich, cobalt-rich and copper-rich com-
positions.

Rietveld refinement was performed according to space groups, atomic coordi-

nates, lattice parameters and symmetry found in PDF-03-065-2975, PDF-00-042-

1467 and PDF-04-007-1375 for CeO2, Co3O4 and CuO respectively. The refined
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results for composition estimation can be seen in Table 5.4. According to the afore-

mentioned PDF Cards, the lattice parameters are shown in Table 5.5.

Table 5.4: Rietveld refinement for cerium-rich, cobalt-rich and cobalt-rich composi-
tions.

Ce:Co:Cu - 50:25:25 % mol
Oxide Weight (%) Metal Weight (%) Molar (%) Discrepancy (%)
CeO2 69.10 Ce 70.37 50.93 0.93
Co3O4 15.50 Co 14.24 24.50 0.50
CuO 15.41 Cu 15.40 24.57 0.43

Ce:Co:Cu - 25:50:25 % mol
Oxide Weight (%) Metal Weight (%) Molar (%) Discrepancy (%)
CeO2 39.93 Ce 41.70 23.60 1.40
Co3O4 39.28 Co 36.99 49.79 0.21
CuO 20.80 Cu 21.31 26.60 1.60

Ce:Co:Cu - 25:25:50 % mol
Oxide Weight (%) Metal Weight (%) Molar (%) Discrepancy (%)
CeO2 43.35 Ce 44.47 26.18 1.18
Co3O4 18.47 Co 17.09 23.92 1.08
CuO 38.18 Cu 38.43 49.90 0.10

Table 5.5: Oxides lattice parameters according to PDF database.

PDF Cards a [nm] b [nm] c [nm] ↵ (�) � (�) � (�)
PDF-03-065-2975 (CeO2) 0.5411 0.5411 0.5411 90.00 90.00 90.00
PDF-00-042-1467 (Co3O4) 0.8084 0.8084 0.8084 90.00 90.00 90.00
PDF-04-007-1375 (CuO) 0.4684 0.3423 0.5129 90.00 99.54 90.00

In tables 5.6, 5.7 and 5.8 the lattice parameters calculated for each composition,

respectively, can been seen. By the PDF cards mentioned it is taken that CeO2 has

the cubic structure of Fluorite with symmetry space group Fm3m, Co3O4 is a cubic

Spinel with space group Fd3m and CuO has the monoclinic Tenorite structure from

space group C 2/c.

The quality of the fitted data can be observed in Figures 5.2a, 5.2b and 5.2c

in which the red dots represent the experimental data, the black line is the fitted

calculated model and the blue line is the difference between the experimental data

and the fitted one. In addition, inserted in the graphs are the R-factors and the

“goodness of fitness” �2.
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Table 5.6: Lattice parameters calculated by Rietveld refinement - cerium-rich.

Oxide Lattice parameters for the cerium-rich composition
a [nm] b [nm] c [nm] ↵ [�] � [�] � [�]

CeO2 0.5409(5) 0.5409(5) 0.5409(5) 90.00 90.00 90.00
Co3O4 0.8074(6) 0.8074(6) 0.8074(6) 90.00 90.00 90.00
CuO 0.4696(4) 0.3408(0) 0.5127(5) 90.00 99.66 90.00

Table 5.7: Lattice parameters calculated by Rietveld refinement - cobalt-rich.

Oxide Lattice parameters for the cobalt-rich composition
a [nm] b [nm] c [nm] ↵ [�] � [�] � [�]

CeO2 0.5411(4) 0.5411(4) 0.5411(4) 90.00 90.00 90.00
Co3O4 0.8079(0) 0.8079(0) 0.8079(0) 90.00 90.00 90.00
CuO 0.4698(4) 0.3410(5) 0.5132(1) 90.00 99.60 90.00

Table 5.8: Lattice parameters calculated by Rietveld refinement - copper-rich.

Oxide Lattice parameters for the copper-rich composition
a [nm] b [nm] c [nm] ↵ [�] � [�] � [�]

CeO2 0.5410(7) 0.5410(7) 0.5410(7) 90.00 90.00 90.00
Co3O4 0.8077(5) 0.8077(5) 0.8077(5) 90.00 90.00 90.00
CuO 0.4696(5) 0.3410(1) 0.5130(0) 90.00 99.62 90.00

5.2 Thermogravimetric analysis

The TGA results are shown in Figure 5.3. The results show two bigger mass losses

for each TGA graph in which the first one is between 25 and 450�C and the second

one between 840 and 900�C. For the cerium-rich composition the losses are around

5.77 and 0.86% respectively. For the cobalt-rich composition, the losses are 5.44

and 2.41% respectively. Finally, for the copper-rich composition, results are 5.32

and 1.05%.

The first loss is associated with volatiles evaporation such as water and remaining

nitrate compounds originated from the synthesis process. It is known that Co3O4

decomposes to CoO at 920�C according to Equation 5.1, thus the second loss can

be definitely linked to this decomposition [281–283] and it can be noticed because
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(a)

(b)

(c)

Figure 5.2: Rietveld refinement fitness, R-factors and goodness of fit for (a) cerium-
rich (b) cobalt-rich and (c) copper-rich composition.

it is higher in the second composition (cobalt-rich) than the others.

Co3O4 ⌦ 3CoO +
1

2
O2 (5.1)
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(a)

(b)

(c)

Figure 5.3: Thermogravimetric analysis for the (a) cerium-rich (b) cobalt-rich and
(c) copper-rich compositions.
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5.3 X-ray fluorescence analysis

The compilation of XRF results can be seen in Table 5.9. Once more it shows

fair accordance with the synthesis design, especially when taking into account the

counting error which is provided by the equipment manufacturer for each compound

given their sensibility to fluorescence.

Table 5.9: XRF results for cerium-rich, cobalt-rich and copper-rich compositions.

Element Molar
50:25:25 % 25:50:25 % 25:25:50 %

Ce 52.86 ± 0.64 % 28.31 ± 0.71 % 28.09 ± 0.71 %
Co 23.43 ± 0.61 % 48.11 ± 0.33 % 24.33 ± 0.45 %
Cu 23.71 ± 0.50 % 23.58 ± 0.44 % 47.58 ± 0.29 %

Using the XRF results in Table 5.9, it is possible to estimate the weight percent-

ages of the oxides before and after reduction as shown in Table 5.10.

Table 5.10: Weight percentages estimated by XRF data.

Compositions Precursors wt. % Reduced wt. %
CeO2 Co3O4 CuO CeO2 Co Cu

2:1:1 68.44 15.76 15.81 73.88 12.49 13.63
1:2:1 43.26 38.20 18.55 50.23 32.57 17.21
1:1:2 43.07 19.38 37.56 49.33 16.30 34.37

Furthermore, dividing the weights calculated in Table 5.10 by the density of

each compound shown in Table 5.11 the volume fraction of each phase is estimated

in Table 5.12. In addition, considering that ceria will probably not be completely

reduced it is possible to calculate the increase in porosity due to cobalt and copper

oxide reduction.

Table 5.11: Density of the oxides and metals.

Compounds CeO2 Co3O4 CuO Co Cu
Density (g.cm-3) 7.65 6.11 6.31 8.90 8.96

For a matter of comparison with literature, Table 9.3 of the Appendix I presents

the equivalences of percentages in mol and mass for the metals and their oxides.
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Table 5.12: Volume percentages estimated from weight percentages and densities in
Tables 5.10 and 5.11 respectively.

Compositions Oxides vol. (%) Reduced vol. (%) Porosity
Increase (%)CeO2 Co3O4 CuO CeO2 Co Cu

2:1:1 63.76 18.38 17.85 63.76 11.82 12.82 11.60
1:2:1 38.09 42.11 19.80 38.09 32.57 17.09 12.25
1:1:2 38.16 21.50 40.34 38.16 16.21 33.95 11.68

5.4 Particle size distribution

The particle size distribution for each powder sample is shown in Figure 5.4. As

can be observed, the distributions are similar between each other and mainly in

bi-modal shape, apart from the Cerium-rich composition. The particle sizes in 10%

of the distribution (D10) were 2.43, 1.78 and 2.40 µm, whereas the D50 were 8.90,

4.20 and 10.43 µm and finally the D90 were 39.85, 25.82 and 32.37 µm concerning

the cerium, cobalt and copper-rich compositions respectively.

Figure 5.4: Particle size distribution for cerium-rich, cobalt-rich and copper-rich
compositions.

It has to be pointed out that the synthesis method used is supposed to produce

nanoscale or submicroscale powder. However, as seen, the distribution presented

particle size as micrometric, which can be explained by the agglomeration of the

powder after being stored. Yet, when the suspension is produced with each powder,

the particles are supposed to deagglomerate due the action of the dispersant present
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in the vehicle. Therefore, the PSD analysis performed with the Malvern instrument

in aqueous media does not represent the real application in SOFC but the response

of agglomeration for each powder when stored.

Nevertheless, what can be said about the results of PSD is that all distributions

were homogeneous for each material given that they all have similar nature and

density and all three compositions had a similar range of particle sizes mainly with

bi-modal normal distribution.

5.5 Temperature-programmed reduction

The results of TPR are shown in Figure 5.5. Since each powder is composed by a

mixture of oxides, the peaks of hydrogen consumption are overlapped. The reduction

of copper oxide as isolated phase takes place between 150 and 500�C according to

Equations 5.2 and 5.3 [284–286].

2CuO +H2 ⌦ Cu2O +H2O (5.2)

Cu2O +H2 ⌦ 2Cu+H2O (5.3)

The cobalt oxide, analogously to copper oxide, reduces in two steps. The first

reducing reaction occurs according to Equation 5.4 around 300�C for the cobalt oxide

as isolated phase whereas total reduction will take place around 500�C as depicted

in Equation 5.5 [281, 287].

Co3O4 +H2 ⌦ 3CoO +H2O (5.4)
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CoO +H2 ⌦ Co+H2O (5.5)

Regarding cerium oxide, the reduction process is defined by the peaks at higher

temperatures. The reduction of CeO2 will occur partially turning Ce4+ into Ce3+

as shown in Equation 5.6. Cerium oxide’s reduction will turn the lattice oxygen

deficient, thus enhancing the electrical conductivity. Moreover, the cerium oxide

reduction process takes place in two well defined steps. Firstly, the surface-capping

oxygen anions attached to Ce4+ surface with an octahedral coordination will react

with hydrogen at temperatures such as 500 to 650�C. Then, finally, oxygen from

ceria’s bulk structure will be released at temperatures above 750�C [284, 285, 288].

CeO2 + �H2 ⌦ CeO2�� + �H2O (5.6)

Figure 5.5: Temperature-programmed reduction for the cerium-rich, cobalt-rich and
copper-rich compositions with their peaks deconvoluted.

In agreement with the aforesaid, the last two peaks can be assigned to cerium
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oxide, specifically to its surface and bulk reduction, respectively, whereas the four

previous peaks are assigned to copper and cobalt oxide full reduction.

After a blank test in which pure nitrogen was inserted into the reactor until

steady state and then switched to the mixture (5% of hydrogen in balanced nitrogen),

the reactor total volume was estimated at 50 mL. Since the mixture achieved the

steady state after 75 seconds and the input gas was 40 mL.min-1 in which 2 mL.min-1

(5%) was hydrogen, 2.50 mL of hydrogen occupied the rector when it was full. The

relative signals were then calculated in comparison with the signal assigned to the

full reactor and the consumption of hydrogen was then estimated in volume. The

consumption of hydrogen during the whole experiment was 1.67, 2.10 and 7.84 mL

for cerium, cobalt and copper-rich compositions, respectively.

(a)

(b)

Figure 5.6: TPR Calculations (a) theoretical oxygen loss at each reaction step (b)
oxygen loss related at each reduction peak obtained after deconvolution.
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Considering the density of H2 as 0.087 g.L-1, the mass of hydrogen consumed by

each composition was 0.14, 0.18 and 0.67 mg. These values can be normalised by

mass, considering it was used 21.0, 22.3 and 21.6 mg of each electrocatalyst and thus

hydrogen was absorbed in rates of 0.47, 0.56 and 2.16 mL.min-1 per gram of each

electrocatlyst. In Figures 5.6a and 5.6b the theoretical calculations of oxygen mass

percentage lost at each reaction step are represented (Equations 5.2 to 5.6) and the

percentage of oxygen related to each peak area determined after deconvolution.

It is notable in Figure 5.6a that the reactions of copper and cobalt oxides reduc-

tion represents those with higher potential of hydrogen absorption. Yet, in Figure

5.6b it can be observed that for the cobalt-rich composition there is a high potential

of hydrogen consumption indicated by peaks 1 and 4, whereas for the copper-rich,

peaks 2 and 3 are higher. Finally, the peaks 5 and 6 are most likely related to cerium

oxide reduction. Although the copper-rich composition possesses a high value of hy-

drogen absorption at peak 6, this might be related to the fact that part of the copper

oxide reduction can take place at higher temperatures such as 500 or even 660 �C

[284–286, 289].

5.6 Electrical conductivity of the precursor oxides

The Arrhenius plot of the DC conductivity test is shown in Figure 5.7 from which

linear and angular coefficients can be extracted to estimate the activation energy ac-

cording to Equation 5.7. The results of the oxides conductivities are consistent with

the compositions presented, which shows increasing in conductivity with increasing

metal load in the oxides composition.

ln(�) = ln(�0)�
E

R
.
1

T
(5.7)

Table 5.13 presents the equations for each composition and their respective co-

efficients from which activation energy (E) is calculated and shown. The interesting
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Figure 5.7: Electrical conductivity of oxides for cerium-rich, cobalt-rich and copper-
rich compositions.

result that can be observed is that the cerium-rich composition has the lowest ac-

tivation energy, followed by the copper-rich one. Therefore, the former is the one

which has conductivity less affected by temperature followed by the latter, whereas

the cobalt-rich composition is the most influenced by it. Yet, the addition of copper

plays an important role on increasing electrical conductivity, as expected.

Table 5.13: Arrhenius coefficients from conductivity DC test.

Composition Equation R2 �0 [S.cm-1] -E/R E [kJ.mol-1]
Ce:Co:Cu - 2:1:1 -7.4951x + 5.2683 0.9472 5.2683 -7.4951 62.31
Ce:Co:Cu - 1:2:1 -11.2410x + 9.2174 0.9561 9.2174 -11.241 93.46
Ce:Co:Cu - 1:1:2 -8.6178x + 8.3740 0.9558 8.3740 -8.6178 71.65

5.7 Summary of the chapter and conclusions

Regarding the powder characterisation in the present chapter, it was confirmed by

XRD and XRF analysis that the desired compositions were successfully produced by

the amorphous citrate method. Rietveld refinement confirmed once more the com-
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positions whilst lattice parameters showed fair accordance with the PDF database.

The phases discussion has shown that in oxidising conditions and at room tem-

perature the isolated oxides are most likely to occur, whereas at high temperatures

and reducing atmosphere Co and Cu will probably be reduced over CeO2-x surface.

TGA analysis shows 800�C as a suitable temperature for the powders to be

treated after the synthesis process, confirming that all volatiles were eliminated and

phases formed but still avoiding the unnecessary decomposition of cobalt oxide.

Particle size distribution confirmed that even after treatment, the powders size were

still at a micro-scale.

TPR analysis pointed out that the metallic-rich compositions (cobalt and copper)

have the highest ability to absorb hydrogen until full oxidation as expected. The

confirmation of the oxides reducibility indicates the ability of these metals to absorb

hydrogen and shows that they might be catalytically active, especially by the fact

of having semi-filled orbitals in the 3d electronic layer. Moreover, cerium oxide

has confirmed its two stage of oxidation, first the surface and then the bulk. Ceria’s

partial oxidation might leave oxygen vacancies which increases the ionic conductivity

thus augmenting TPB length.

DC conductivity tests revealed that copper plays an important role on increas-

ing electrical conductivity of the electrocatalyst. In addition, cobalt-rich catalysts

conductivity seems to be slightly more sensitive to temperature changes.
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Chapter 6

The CeO2-Co-Cu anode

The thermal compatibilities between anode and electrolyte must be taken into ac-

count for the development of a suitable anode configuration, as already said. The

thermal coefficient of cerium oxide is reported to be around 12 ⇥ 10-6 K-1 [290, 291],

whereas for cobalt oxide spinel (Co3O4) such coefficient is up to 6 ⇥ 10-6 K-1

[292, 293], and finally for copper oxide it is 5 ⇥ 10-6 K-1 [294]. However, zirconia-

based ceramics are known to have thermal coefficients around 13-14 ⇥ 10-6 K-1 [295].

In addition, accounting for the fact that in reducing atmospheres those oxides will

be as metal phases, the mismatch between them and the electrolyte will be even

more critical. For that matter, an interface buffer layer was developed to serve as

interface material between electrolyte and actual anode as the cell design depicted

in Figure 6.1.

Figure 6.1: Cell assembly scheme - Bimetallic anode compositions.
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6.1 The buffer layer - phases characterisation

XRD analysis was done over the powders CeO2 and Sc0.10Ce0.01SZr and compared

to the buffer layer mixture that was previously sintered. The diffractograms are

shown in Figure 6.2. The two first XRD patterns from bottom to top represent

the peaks of the precursors whereas the last pattern shows isolated phases of CeO2

and Sc0.10Ce0.01SZr as well as ZrxCe1-xO2. Slights displacements of the peaks of

the buffer layer can be observed, meaning that an intermediate solid solution (e.g.

ZrxCe1-xO2-�) was formed [296, 297]. In this case “x” is most likely to be in the range

from 0.25 to 0.50.

Figure 6.2: X-ray analysis of the precursors powders and sintered buffer layer.

6.2 Performance and electrochemical impedance

The results of performance and impedance spectra for the cerium-rich composition

under hydrogen as fuel are shown in Figures 6.3a and 6.3b respectively. The max-

imum power densities for this cell were 176, 273 and 363 mW.cm-2 at 750, 800 and
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850�C, respectively. The OCVs were 1.02, 1.01, 1.00 V for the lowest to the highest

temperature. The ohmic resistances were 0.27, 0.20 and 0.15 ⌦.cm2, whereas total

polarisation were 1.27, 0.77 and 0.52 ⌦.cm2 (R2 + R3 from Table 9.6 of Appendix

II) for the same range of temperatures.

(a) (b)

Figure 6.3: Electrochemical performance for the Ce:Co:Cu - 2:1:1 composition from
750 to 850�C (a) i-V plots and (b) impedance spectroscopy with hydrogen as fuel.

The results for the cobalt-rich bimetallic composition are shown in Figures 6.4a

and 6.4b for hydrogen as fuel in which maximum power densities were 152, 261 and

485 mW.cm-2 whereas OCVs were 1.18, 1.17 and 1.16 V at 750, 800 and 850�C.

The ohmic resistances were 0.42, 0.24, 0.20 ⌦.cm2. Total polarisation could be

detected after the ECM was fitted for each case. Although the behaviour at lower

frequencies could not be precisely predicted because the last arc seemed not to reach

its maximum, the same ECM was used as for the other two compositions assuming

that the assembly of each cell was similar. Therefore, total polarisation for this cell

was 2.95, 1.99 and 1.43 ⌦.cm2 at 750, 800 and 850�C, respectively.

Figures 6.5a and 6.5b show electrochemical performance and impedance spectra

for the copper-rich composition. The maximum power densities for this test under

hydrogen were 136, 235 and 327 mW.cm-2 and OCVs were 1.10, 1.09, 1.07 V at 750,

800 and 850�C. Ohmic resistance was 0.37, 0.28 and 0.22 ⌦.cm2. Even though the

impedance spectra are not indicating where the imaginary axis crosses the real axis in

this case, it is notable that its derivative its negative at low frequencies, therefore the
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(a) (b)

Figure 6.4: Electrochemical performance for the Ce:Co:Cu - 1:2:1 composition at
850�C (a) i-V plots and (b) impedance spectroscopy with hydrogen as fuel.

total polarisation can be estimated as around 2.44, 1.24 and 0.81 ⌦.cm2 respectively

at 750, 800 and 850�C.

(a) (b)

Figure 6.5: Electrochemical performance for the Ce:Co:Cu - 1:1:2 composition from
750 to 850�C (a) i-V plots and (b) impedance spectroscopy with hydrogen as fuel.

The results for the tests run with methane as fuel are presented in Figure 6.6a for

electrochemical performance and in Figure 6.6b for impedance spectroscopy. The

maximum power densities at 850�C with methane as fuel were 103, 416 and 35

mW.cm-2 whereas OCVs were 0.90, 1.24 and 0.90 V for cerium, cobalt and copper-

rich compositions, respectively. Yet the ohmic resistances observed from Figure

6.6b were 0.15, 0.22 and 0.26 ⌦.cm2 for cerium, cobalt and copper-rich compositions

respectively.
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The estimated total polarisation was 1.20, 11.86 and 2.05 ⌦.cm2. The first

element (R1) represented on the ECM refers to ohmic resistance whereas the other

two subsequent resistances, coupled with the constant charge capacitive effect, are

assigned to the impedance arcs. For the detailed parameters of fitted ECMs, refer

to Tables 9.6, 9.7 in the Appendix II. The maximum frequency points are also

presented in Tables 9.4 and 9.5 in the Appendix II for hydrogen and methane as

fuels, respectively.

(a) (b)

Figure 6.6: Electrochemical performance for Ce:Co:Cu compositions at 850�C (a)
i-V plots and (b) impedance spectroscopy with direct methane as fuel at 850�C.

Considering the total polarisation resistances for the three compositions in hy-

drogen at various temperatures, an Arrhenius plot is shown in Figure 6.7. The

inverse of the total polarisation resistance, is plotted according to Equation 6.1.

ln

✓
1

Rp

◆
= ln

✓
1

R0

◆
� E

R
.
1

T
(6.1)

The total polarisation herein presented is related to the full cell, however, since

the cathode and the electrolyte were not changed from cell to cell, it can be assumed

that the differences between each cell is related to anode characteristics. Therefore

the activation energy is proportional to anode ability to adsorb and dissociate hydro-

gen molecules as well as its diffusion and charge transfer through the TPB regions.
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In Table 6.1 the linear coefficients and slopes are represented. In summary,

the energy consumed is a sum of electrical and mass transfer processes as well as

catalytic activity. This can explain why the slope is higher for the copper-rich com-

position even if its conductivity is higher. Cobalt is expected to enhance catalytic

activity whereas cerium oxide provides higher microstructure stability in terms of

coarsening. Table 6.2 compiles the results for the tests performed at the University

of Birmingham.

Table 6.1: Linear regression for total polarisation - Bimetallic compositions.

Composition Equation R2 1/R0 [⌦-1.cm-2] -E/R E [kJ.mol-1]
Ce:Co:Cu - 2:1:1 -10.270x + 9.8108 0.9982 9.8108 -10.270 85.38
Ce:Co:Cu - 1:2:1 -8.3243x + 7.0600 0.9995 7.0600 -8.3243 69.21
Ce:Co:Cu - 1:1:2 -12.704x + 11.5580 0.9893 11.5580 -12.704 105.62

Figure 6.7: Arrhenius plot for the inverse of the total polarisation resistances of cells
in hydrogen as fuel.
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Table 6.2: Compiled results for the cells tested at the University Birmingham

Composition Fuels Temperature
[�C] OCV [V] Max. P. D.*

[mW.cm-2]
@ 0.7 V

[mA.cm-2]
Ohmic Res.

[⌦.cm-2]
Total Pol.
[⌦.cm-2]

Cerium-rich Hydrogen
750 1.02 176 226 0.27 1.27
800 1.01 273 344 0.20 0.77
850 1.00 363 436 0.15 0.52

Methane 850 0.90 103 125 0.15 1.20

Cobalt-rich Hydrogen
750 1.18 152 217 0.42 2.95
800 1.17 261 377 0.24 1.99
850 1.16 485 660 0.20 1.43

Methane 850 1.24 416 600 0.22 11.86

Copper-rich Hydrogen
750 1.10 136 187 0.37 2.44
800 1.09 235 316 0.28 1.24
850 1.07 327 425 0.22 0.81

Methane 850 0.90 35 40 0.26 2.05

*P.D. = Power Density

6.3 Performance and GC-coupled analysis

The tests in the present section were performed in order to obtain reproducibility

for the three Ce:Co:Cu compositions in a different test rig set up. In addition,

the tests were run with the outlet anode gas coupled to a GC, as described in

Section 4.4. The main objective was to determine the amounts of CO and CO2

as products of electrochemical oxidation, thus identifying which reaction path each

catalyst composition is most likely to promote.

Figures 6.8a and 6.8b show the results of electrochemical performance as well as

the GC analysis of the anode products at the outlet gas for cerium-rich composition

in Figure 6.8c. Maximum power densities for the cerium-rich composition in hydro-

gen were 100, 190 and 290 mW.cm-2 at 700, 750 and 800�C whereas in methane 108,

150 and 205 mW.cm-2 at 775, 800 and 825�C, respectively.

At 775�C CO production increases with higher charges indicating partial elec-

trochemical oxidation whereas CO2 amount remains unaltered. However at 800�C,

under 10 and 20 mA, the CO amount increased whereas in 30 mA full oxidation

seems to take place as CO2 production increases. Finally, at 825�C the CO amount

decreases with increasing charge whereas CO2 increases. Therefore, full electro-

chemical oxidation seems to be favoured for this composition when temperature is

above 800�C.

In addition, the amount of C2 hydrocarbons for cerium-rich results remains al-
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most unaltered indicating that these products are generated by the thermal decom-

position of methane. The average of C2 selectivity was 7 % with 0.41 % standard

deviation considering all cases tested for the cerium-rich composition.

Figures 6.9a, 6.9b and 6.9c present the results of electrochemical performance

both in hydrogen and methane as fuels at different temperatures as well as the GC

analysis of the anode products at the outlet gas for cobalt-rich composition. From

Figures 6.9a and 6.9b maximum power densities with hydrogen were 300, 460 and

560 mW.cm-2 at 700, 750 and 800�C whereas for methane 160, 210 and 260 mW.cm-2

at 775, 800 and 825�C, respectively.

(a) (b)

(c)

Figure 6.8: Electrochemical tests - cerium-rich with (a) hydrogen and (b) methane as
fuel and (c) molar amount of products at different temperatures and loads conditions.

Figure 6.9c indicates that at at 775�C the reaction path seems to be displaced
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towards full oxidation rather than partial oxidation since the amount of CO2 in-

creases from 10 to 30 mA. The same seems to occur at 800�C. On the other hand,

at 825�C as current increases, CO amount increases with current, thus indicating

reaction’s displacement towards partial oxidation.

(a) (b)

(c)

Figure 6.9: Electrochemical tests - cobalt-rich with (a) hydrogen and (b) methane as
fuel and (c) molar amount of products at different temperatures and loads conditions.

Regarding the C2 production for the cobalt-rich anode, the selectivity is 11 %

with standard deviation of 1.1 % for cases at 775 and 800�C indicating thermal

decomposition within these conditions. On the other hand, at 825�C the selectivity

to C2 decreases by half at 10 mA when comparing with OCV at the same tempera-

ture. As CO amounts increase drastically at this temperature, this might be another

proof of electrochemical reaction since the amounts of thermal decomposition prod-
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ucts become smaller to give place to CO production.

(a) (b)

(c)

Figure 6.10: Electrochemical tests - copper-rich with (a) hydrogen and (b) methane
as fuel and (c) molar amount of products at different temperatures and loads con-
ditions.

Figure 6.10 show the results for electrochemical performance both in hydrogen

or methane as fuels for the copper-rich composition, as well as the reaction products

at the anode outlet gas. Maximum power densities in hydrogen were 37, 83 and

174 mW.cm-2 whereas in methane 17, 30, 49 mW.cm-2 at 775, 800 and 825�C,

respectively.

Figure 6.10c shows that at 775�C the production of CO increases with current

whereas CO2 decreases, indicating partial oxidation, the same occurs at 825�C.

However, at 800�C the reaction path seems to be displaced towards full oxidation,
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Table 6.3: Compiled results for the cells tested at Federal University of Rio de
Janeiro.

Composition Fuels Tempetature
[�C] OCV [V] Max. P. D.

[mW.cm-2]
@ 0.7 V

[mA.cm-2]

Cerium-rich

Hydrogen
700 1.08 100 133
750 1.07 190 253
800 1.06 290 393

Methane
775 1.01 108 115
800 1.00 150 165
825 1.03 205 255

Cobalt-rich

Hydrogen
700 1.09 300 370
750 1.08 460 583
800 1.07 560 688

Methane
775 0.98 160 130
800 1.00 210 165
825 1.01 260 263

Copper-rich

Hydrogen
700 1.09 37 51
750 1.09 83 114
800 1.08 174 235

Methane
775 0.99 17 21
800 1.00 30 38
825 0.99 49 63

since the CO2 amount increases. Tests at 30 mA were not performed since the

voltage of the cell was very low at this current.

In addition, the selectivity to C2 hydrocarbons does not seem to change signif-

icantly within different conditions indicating that the production is again due to

thermal cleavage rather than electrochemical. The average selectivity to C2 hydro-

carbons was 9.9% with a standard deviation of 0.5%. In table 6.3 are compiled the

results for the tests performed at the Federal University of Rio de Janeiro.

The rates of CO and CO2 were calculated for each case as explained in Section 4.4

and then plotted against electric current for each operation temperature in Figure

6.11.

Figures 6.11a and 6.11b show the rate of CO and CO2 measured for the cerium-

rich compositon. In Figure 6.11a, the production of CO at various temperatures

remains almost unaltered as current increases, suggesting the effect of electrochemi-

cal partial oxidation (EPO) was not being sensed in this case whereas the CO2 rate
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- Figure 6.11b - slightly increases for all temperatures with current, suggesting small

shares of electrochemical full oxidation (EFO).

For the cobalt-rich composition, CO production seems to increase with increasing

current especially at 825�C. At 775 and 800�C the differences are small, but still

increasing with current as can be seen in Figure 6.11c. Yet CO2 rate also increases

with current suggesting activity of EFO as seen in Figure 6.11d. Additionally, it has

to be pointed out that the rates for this composition are twice as big than for the

cerium-rich one.

For the copper-rich compositon the production rates also increase, but slightly.

However, it is the compositon that shows the most well-defined trend of increasing

carbon oxides prodution with drawn current. The copper-rich composition results

are represented in Figure 6.11e and 6.11f.

6.4 Results comparison and reproducibility

The results taken in both places can be compared using Tables 6.2 and 6.3. For

the cerium-rich composition, the reproducibility can be noted from the tests with

hydrogen that show results very close for each cell. In addition, the trend of each

temperature changing makes sense, since power increases at a homogeneous rate with

increasing temperature. However, results with methane differ drastically amongst

them, since they are comparable with a difference of 75�C.

Regarding the cobalt-rich composition, even though results differ greatly in hy-

drogen the power-temperature trend is kept similar for both cells. Moreover, results

with methane for these cells follow similar trends despite the difference on the abso-

lute values. Copper-rich cells, despite having the worst results, they were reasonably

compatible both in hydrogen and methane, showing reasonable reproducibility. The

results comparison makes obvious that the cobalt-rich composition behaves the best

in all tests, indicating that cobalt seems indeed to play an important role for the

methane processing reactions.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.11: Production rates of (a) carbon monoxide and (b) carbon dioxide for
cerium-rich composition, (c) carbon monoxide and (d) carbon dioxide for cobalt-rich
composition, (e) carbon monoxide and (f) carbon dioxide for copper-rich composi-
tion.
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6.5 Post-mortem characterisation

6.5.1 Raman spectroscopy of the anode surface

Raman spectra in Figure 6.12 show peaks located at 196, 482, 523, 621 and 691 cm-1

that are related to Co3O4 [298–301], 286 and 347 cm-1 to CuO [302] and 462 cm-1

to CeO2 [303]. The peak at 550 cm-1 is assigned to Cu2O [304].

Figure 6.12: Raman spectroscopy for the bimetallic compositions of post-operated
anode cells.

The ceria peak at 462 cm-1 can be assigned to the Ce F2g mode due to symmetrical

stretching of the O-Ce-O vibrational unit in octahedral coordination [305, 306]. The

absence of a fluorite-type structure at 600 cm-1 suggests that solid solutions were

most likely not formed [304] which corroborates with previous X-ray discussion. In

addition, broadening and shifting of the Ce F2g band indicates that ceria’s particle

size might be changed [304].

The Raman peaks of crystalline Co3O4 are related to Eg (482 cm-1), F2g (523

and 621 cm-1) and A1g (691 cm-1) modes [281, 307, 308]. Therefore, this confirms

that cobalt oxide is present only in its highest state of oxidation (Co3O4) even after

the cell being operated showing that this oxide kept its oxi-redoxi capacity.

The peaks at 286 and 347 cm-1 of CuO can be assigned to the Ag and Bg vibra-
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tional modes respectively [309]. Although peak locations are slightly different from

literature (298 and 345 cm-1 [310]), this can be due to size effects.

6.5.2 TPO of the anode bulk

The graph in Figure 6.13 shows the TPO profiles for a sample of approximately 1.26

mg of graphite powder and the Ce:Co:Cu anodes after being operated with direct

methane for over at least 10 hours. The GC coupled to the outlet gas that flowed

through each sample was able to detect the absolute amounts of CO and CO2 as

products of carbon oxidation over a temperature range of 150 to 850�C.

The graph represents the molar amounts in comparison to the baseline test

with carbon black. The sum of the products of oxidation for each composition

was recorded and compared to the graphite mass previously known. The amounts

of carbon oxidised from the anodes were estimated as 0.29, 0.29 and 0.25 mg for

cerium-rich, cobalt-rich and copper-rich, respectively. Taking into account the an-

ode average volume it can be said that the carbon deposits were in the order of 0.19,

0.19 and 0.16 g.cm-3 which represents less than 3% wt. of the anode in all three

cases.

Long-term tests were not object of study in this work, but so far it can be

said that the anode material ceria-cobalt/copper-based has shown to be resistant to

coking, considering that a state of the art nickel-based anode would be completely

destroyed after a couple of hours of operation with direct anhydrous methane [93,

210, 311, 312]. In addition, carbon oxidation shown in the profiles occurred in

small mass/volume ratio and peaks shape identified in the GC chromatogram were

not sharp and well-defined and therefore very sensitive to integration errors, again

confirming that the molar amount formed was almost negligible.

6.5.3 SEM of the aged anode cross section

Scanning electron microscopy images are shown for each aged anode cross section

in Figure 6.14. The images show clearly the distinction between the three layers,
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Figure 6.13: Temperature-programmed oxidation of the cells bulk after operation.

the electrolyte at the bottom supporting the thin buffer layer and finally the anode

layer on top of it.

Figure 6.14a shows the anode for the cerium-rich composition in which the buffer

layer is approximately 7.5 µm thick whereas the anode layer is 12.9 µm thick. Figure

6.14b show the cross section for the 1:2:1 composition showing thickness of 5.8 µm

and 18.6 µm for the buffer layer and anode, respectively. Figure 6.14c presents the

microstructure for the copper-rich composition showing layers of 5.8 and 13.4 µm for

the buffer layer and anode, respectively. The point EDX results are shown in Figure

6.15 corroborating strongly with the cross section imaging with clear distinction

between phases through each layer. For all three anodes the EDX spectra presented

by the dot 1 show the elements of the anode in abundance, whilst in dot 2 the metals

cobalt and copper are less present. Finally, dot 3 present the electrolyte elements

Zr, Sc and Ce, accordingly.

Figures 6.16, 6.17 and 6.18 show the EDX mapping and distributions of phases for

the elements zirconium, cerium, cobalt and copper in cerium, cobalt and copper-rich

compositions, respectively. Figures 6.16f, 6.17f and 6.18f represent the EDX elements
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images merged all together to depict phase and pores distribution throughout the

cross section of each composition. The images merging was done using the image

processing software Metallographica to apply low-pass filters eliminating noise and

to attribute colors to each phase. After that, Matlab was used to superpose each

image. Furthermore, the porosity of each composition was estimated by image

analysis over Figures 6.14a, 6.14b and 6.14c as 30.3, 27.8 and 14.5% for cerium-rich,

cobalt-rich and copper-rich compositions, respectively. Although cerium and cobalt-

rich composition presented similar porosities it has to be pointed out the considerable

difference of the copper-rich composition that might be due to coarsening.
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(a)

(b)

(c)

Figure 6.14: SEM imaging over reduced and aged anodes (a) Ce:Co:Cu - 2:1:1, (b)
Ce:Co:Cu - 1:2:1 and (c) Ce:Co:Cu - 1:1:2.
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(a)

(b)

(c)

Figure 6.15: EDS point composition - identifying the layers for the reduced and
aged anodes (a) Ce:Co:Cu - 2:1:1, (b) Ce:Co:Cu - 1:2:1 and (c) Ce:Co:Cu - 1:1:2.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.16: EDX mapping over reduced and aged anode cross section - cerium-rich
composition. (a) Original field micrographed, (b) zirconium, (c) cerium, (d) cobalt,
(e) copper and (f) phases overlap.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.17: EDX mapping over reduced and aged anode cross section - cobalt-rich
composition. (a) Original field micrographed, (b) zirconium, (c) cerium, (d) cobalt,
(e) copper and (f) phases overlap.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.18: EDX mapping over reduced and aged anode cross section - copper-rich
composition. (a) Original field micrographed, (b) zirconium, (c) cerium, (d) cobalt,
(e) copper and (f) phases overlap.
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6.6 Summary of the chapter and conclusions

The OCVs of the tests with hydrogen ranging from 1.00 to 1.15 V suggest that

no significant leakage occurred thus showing that the Thermicullit sealing gasket

worked properly and without the necessity of high loads when mounting the tubes

over one another.

Taking into account the impedance spectra of Figures 6.3b, 6.4b and 6.5b, the

ohmic resistance is almost unaltered for the three compositions varying only when

temperature is changed, thus indicating that ohmic contributions are mainly due

to the electrolyte effect, which is the same in all cases, and the electrodes ohmic

resistance within it can be neglected.

GC analysis gave the idea of which range of temperature is the most effective for

each composition to operate, considering that the cases when the reaction path is

shifted towards full oxidation present higher efficiency to the system. In this case,

it can be said that for the cerium-rich composition, operation at 825�C is the best

condition, considering that the CO2 amount increases as current is applied. The

cobalt-rich composition seems to operate better at 800�C since CO2 amounts are

greater at this condition. The same occurs for the copper-rich composition, that

showed higher amounts of CO2 at 800�C.

From the short-term methane tests, it was observed that cobalt seems to play

an important catalytic role in the proposed mixture. However, even though perfor-

mance results with methane were the highest with the cobalt-rich composition, the

asymptotic behaviour on the impedance for this composition suggests high concen-

tration effects that might be due to carbon deposition that somehow promoted clog-

ging. Moreover, the increase in OCV for the cobalt-rich composition after methane

was used as fuel also can suggest carbon formation [273] since OCV is altered by the

reaction products presented in the anode chamber. Nevertheless, Raman results in

Figure 6.12 do not show evidence of coking on the surface of any tested composition.

Moreover TPO results confirmed that even though no carbon was found by

Raman spectroscopy for the operated cells, small amounts of it were impregnating
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the anode microstructures and since no long-term test was taken so far, nothing can

be said about these deposits being negligible or not. However, it was observed that

the amounts of carbon per unit volume were not enough to deplete physically or

visually the anode of any composition.

SEM results have shown homogeneous phase distribution throughout the cross

section of each composition. The thickness of each anode layer deposited is repro-

ducible at each studied anode. Pores distribution has shown to be higher with the

cerium-rich composition and quite similar to the cobalt-rich composition. However,

the copper-rich composition presented almost half of porosities, indicating that pore

blocking might have occurred by copper phase coarsening.
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Chapter 7

The role of cobalt and copper

In order to understand the role of each metal in the ceria-based material whilst

operating with hydrogen or methane monometallic compositions were produced.

The ceria-cobalt and ceria-copper powder were also synthesised by the amorphous

citrate method as explained in Section 4.1. However the molar composition was

1:1 both for Ce:Co and Ce:Cu and thus from here onwards named CeO2-Co3O4

and CeO2-CuO, respectively. For the two monometallic compositions produced, the

following amounts of nitrates, water and citric acid that were used are shown in

Tables 7.1 and 7.2.

Table 7.1: Synthesis of precursors CeO2-Co3O4.

Ce:Co:Cu - 1:1:0 Nitrates Solution Citric Acid Solution
Salt [g] DI Water [mL] Citric Acid [g] DI Water [mL]

Ce(NO3)3.6H2O 5.4536 3.1164 2.6392 1.9844
Co(NO2)3.6H2O 3.6552 2.7278 2.6392 1.9844
Cu(NO3)2.3H2O 0.0000 0.0000 0.0000 0.0000

Table 7.2: Synthesis precursors CeO2-CuO.

Ce:Co:Cu - 1:0:1 Nitrates Solution Citric Acid Solution
Salt [g] DI Water [mL] Citric Acid [g] DI Water [mL]

Ce(NO3)3.6H2O 5.3301 3.0458 2.5794 1.9394
Co(NO2)3.6H2O 0.0000 0.0000 0.0000 0.0000
Cu(NO3)2.3H2O 2.9656 2.1490 2.5794 1.9394

The powders produced were characterised by basic techniques such as X-ray
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diffraction and TGA analysis as described in Sections 4.2.1 and 4.2.2, respectively.

The cells were assembled with LSM as cathode and an anode buffer layer as described

in Section 4.3 and then the CeO2-Co3O4 and CeO2-CuO anode inks were deposited

over it to compose the full cell and also sintered at 900�C. The scheme of these cell

assemblies is depicted in Figure 7.1.

Figure 7.1: Cells assembly scheme - Monometallic compositions.

7.1 X-ray analysis

X-ray patterns are presented in Figure 7.2. The phases formed were CeO2, Co3O4

and CuO after heat treatment at 800�C. It is important to point out that before

heat treatment, the 1:0:1 composition had copper oxide on its least oxidised form

(Cu2O) and after treating in air, full oxidation of Copper took place turning it into

CuO. The details can be seen inserted in Figure 7.2.

7.2 Thermogravimetric analysis

The TGA results are presented in Figure 7.3. The losses around 7.58 % in Figure

7.3a from 25 to 450�C represent the volatiles evaporation whereas in Figure 7.3b a

gain of mass of around 0.53 % can be observed from 25 to 450�C which is assigned to

copper oxidation (Cu2O ! CuO), which corroborates with X-ray results in Figure

7.2. No further significant loss is noted at higher temperatures.
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Figure 7.2: X-ray diffractograms for ceria-cobalt and ceria-copper compositions.

7.3 Electrochemical tests

Results of electrochemical performance and impedance spectra are presented in Fig-

ures 7.4a, 7.4b, 7.5a, 7.5b, 7.6a and 7.6b for the monometallic compositions.

The maximum power densities with hydrogen as fuel for the ceria-cobalt compo-

sition were 97, 147 and 247 mW.cm-2 whereas OCV were 1.12, 1.11 and 1.09 V at

750, 800 and 850�C, respectively as depicted in Figure 7.4a. The ohmic resistance

was 0.38, 0.24 and 0.18 ⌦.cm2 whereas total polarisation was 5.09, 3.06 and 1.54

⌦.cm2 at 750, 800 and 850�C, respectively.

For the ceria-copper composition operating with hydrogen as fuel the maximum

power densities were 40, 71 and 118 mW.cm-2 and OCV values were 1.15, 1.12 and

1.11 V from 750 to 850�C, respectively as shown in Figure 7.5a. For the impedance

spectra in Figure 7.5b the ohmic resistances were 0.47, 0.32 and 0.24 ⌦.cm2 and

total polarisations 5.58, 2.55 and 1.80 ⌦.cm2 at 750, 800 and 850�C, respectively.

The results with methane as fuel shown in Figure 7.6a indicate maximum power

densities of 130 and 32 mW.cm-2 and OCVs of 1.22 and 1.07 V for the ceria-cobalt

and ceria-copper compositions, respectively. Regarding ohmic resistances, Figure
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(a)

(b)

Figure 7.3: Thermogravimetric analysis for the (a) CeO2Co3O4 and (b) CeO2CuO
compositions.

7.6b show 0.19 and 0.24 ⌦.cm2 for CeO2-Co3O4 and CeO2-CuO compositions, re-

spectively, whereas for the total polarisation only for ceria-copper composition it was

possible to fit a model that converged to 0 at the imaginary axis thus showing 3.78

⌦.cm2. The spectrum of impedance for the ceria-cobalt anode indicates high polari-

sation effects at lower frequencies indicating problems with transport, probably due

to carbon deposition.

For the parameters of fitted ECMs, refer to Tables 9.8, 9.9 in the Appendix II.

Yet using the estimative of polarisation resistance for hydrogen as fuel, the Ar-
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(a) (b)

Figure 7.4: Electrochemical performance for CeO2-Co3O4 composition from 750 to
850�C (a) i-V plots and (b) impedance spectroscopy under hydrogen as fuel.

(a) (b)

Figure 7.5: Electrochemical performance for the CeO2-CuO composition 750 to
850�C (a) i-V curve and (b) impedance spectroscopy under hydrogen as fuel.

rhenius plot is shown in Figure 7.7. The coefficients are presented in Table 7.3 in

which can be seen that the slopes are almost the same and larger than those for the

bimetallic compositions.

The higher the slope, the higher the temperature needed to activate and make the

catalyst work properly. This result shows that the bimetallic compositions tested

so far are more effective in terms of anode activity, charge and mass transport

phenomena since their activation energies are smaller than for the monometallic

compositions.
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(a) (b)

Figure 7.6: Electrochemical performance for CeO2-Co3O4 and CeO2-CuO composi-
tions at 850�C (a) i-V curve and (b) impedance spectroscopy under direct methane
as fuel.

Figure 7.7: Arrhenius plot for total polarisation resistances of monometallic cells in
hydrogen as fuel.

7.4 Post-mortem characterisation

The Raman spectra for the two monometallic compositions are presented in Figure

7.8. For the CeO2-Co3O4 composition, cobalt oxide is noted at 196, 482, 523, 621

and 691 cm-1 whereas for the CeO2-CuO composition, copper oxide is seen as CuO

at 286 and 347 cm-1 and Cu2O at 550 cm-1. In both compositions cerium oxide is
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Table 7.3: Linear regression for total polarisation - Monometallic compositions.

Composition Equation R2 1/R0 [⌦-1.cm-2] -E/R E [kJ.mol-1]
Ce:Co:Cu - 1:1:0 -13.693x + 11.720 0.9874 11.720 -13.693 113.84
Ce:Co:Cu - 1:0:1 -13.066x + 11.114 0.9638 11.114 -13.066 108.63

seen at 462 cm-1. Moreover, the CeO2-Co3O4 spectrum shows evidence of carbon

deposition over the surface, presented at 1330, 1580 and 2660 cm-1 for the G, D and

2D bands.

Figure 7.8: Raman spectroscopy for the monometallic compositions.

7.5 Summary of the chapter and conclusions

The aim of this part of the work was to provide valuable information about each

metal in monometallic catalyst form and relate it to the effects experienced in the

bimetallic compositions. The X-ray results have shown that initially another phase

which was the lowest state of copper oxide was present (Cu2O) in the cerium-copper

catalyst, which was oxidised after firing at 800�C in air. Moreover, TGA results cor-

roborated with the aforesaid by showing mass increase in Figure 7.3b. The cerium-

cobalt compositions have behaved as expected in that case by forming cerium and

cobalt oxides as isolated phases.
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Electrochemical tests revealed higher ability of the cerium-cobalt anode to op-

erate with both hydrogen and methane as fuels, whereas cerium-copper has shown

to be poorer in performance. However, whilst methane fed, the cerium-cobalt has

shown evidences of carbon deposition represented by high impedances at low fre-

quencies of its spectrum shown in Figure 7.6b.

The Raman spectra of the post-mortem cells revealed evidence of coking on the

cerium-cobalt composition whereas nothing was found on the cerium-copper anode.

Although the excess of cobalt might shift the decomposition towards coking, this

metal seems to play an important role as catalyst whereas copper might be more

adequate when the material lacks on electronic conductivity. Another important

conclusion is that copper seems to diminish the cobalt activity to retain carbon thus

playing an important role on coking prevention.
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Chapter 8

Discussions

8.1 Phases formation

The XRD results indicated the formation of CeO2, Co3O4 and CuO rather than solid

solutions. Although solid solutions between CeO2 and Cu will most likely not occur

[279], the phase diagram of CeO2-CoO shows that cobalt has a certain solubility into

ceria’s lattice [280] as can be seen in Figure 8.1a. However, cerium and cobalt oxides

are most likely to occur as different phases after oxidation and at room temperature.

Furthermore, the proportion of Ce-Co are 66.7-33.3%, 33.3-66.7% and 50-50% for

2:1:1, 1:2:1 and 1:1:2 compositions respectively whereas for Ce-Cu are 66.7-33.3%,

50-50% and 33.3-66.7%. Yet molar ratios of Co-Cu are 50.0-50.0%, 66.7-33.3% and

33.3-66.7%, respectively.

Nevertheless, taking into account that solubility of Cu into ZrO2 (which has the

same fluorite structure of CeO2) is low, one might be led to the conclusion that it

may behave similarly with CeO2 [317, 318]. However, at high temperatures, and

as metallic phases, compounds might be formed between Ce-Cu (Figure 8.1c) prior

to oxidation, and as the material is annealed and CeO2 begins to form, Cu might

precipitate over Ceria’s surface and then, finally, after complete oxidation CuO is

formed as isolated phase[319–321].

In Figure 8.1a, the black dots represent the three main compositions cerium-

rich, cobalt-rich and copper-rich. As can be seen either in operation temperatures
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(a) (b)

(c) (d)

Figure 8.1: Binary phase diagram for (a) CeO2-Co3O4 (Adapted from [313]), (b) Ce-
Co (Adapted from [314]), (c) Ce-Cu (Adapted from [315]) and (d) Co-Cu (Adapted
from [316]).

and room temperatures the oxides are to be formed as separate phases according to

thermodynamics. In Figure 8.1b the black dots show that in reducing conditions,

metallic phases between Ce-Co might be formed. However, it is known that cerium

oxide is prone to surface reducing rather that bulk reducing in most of the cases

[284, 285, 288]. Therefore, these Ce-Co phases are most likely to be formed over

CeO2 surface. Yet the same applies to Ce-Cu systems as shown in the phase diagram

of Figure 8.1c. On the other hand, considering Co-Cu metallic phases - Figure 8.1d -

isolated metallic cobalt and copper are most likely to occur rather than solid solution

amongst them.
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8.2 Impedance spectroscopy considerations

In Figures 8.2a and 8.2b the Bode diagram is plotted for all three tested compositions

fabricated with the buffer layer. In the Bode plot a dark dashed line represented

by the minimum values between the cobalt-ceria and copper-ceria (monometallic

compositions) impedances can be seen. These minimum values were plotted to serve

as a threshold for the bimetallic compositions which have to have lower impedance

to be sorted as a better option.

In the Bode plot it is possible to split the contributions from each overpotential

source taking into account that some effects are more evident at higher frequencies

whereas others are experienced at low frequencies. Therefore, it is known that ef-

fects of impedance at frequencies over 20 kHz are associated to ionic transport thus

mainly ohmic resistance. Furthermore, responses in a range of frequency of 5 to

0.5 kHz are associated to charge transfer on TPBs and current exchanging. The

effects of gas diffusion can be observed in lower ranges such as 100 to 10 Hz whereas

gas decomposition or reforming effects can be sensed in even lower frequencies such

as 5 to 0.1 Hz [322–324]. In addition, the processes occurring at low frequencies

such as gas diffusion through the microstructure and channels as well as fuel conver-

sion/reforming can be linked to mass transfer. At higher frequencies, phenomena

such as dissociative adsorption of fuel molecules, oxidation and electrochemical re-

actions on TPB sites, are charge transfer processes [322, 323].

In comparison with the monometallic compositions the bimetallic anodes per-

formed better in most of the cases. In terms of impedance, the ceria-rich composi-

tion has shown to be the most suitable for the anode purpose, especially when in low

frequencies, characterising that this electrocatalyst is the best to promote hydrogen

or methane conversion. Moreover, even though the ceria-electrolyte buffer layer is

present, gas reforming ability was also retained, probably due to ceria’s high activity

for methane reforming [325–328].
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(a)

(b)

Figure 8.2: Bode diagram of impedance data collected at 850�C with (a) hydrogen
and (b) methane as fuel.

8.3 The buffer layer

The phase formation for the ZrO2-CeO2 and ZrO2-CeO1.5 can be evaluated in the

phase diagrams of Figures 8.3a and 8.3b, respectively obtained from [329–331]. Since

50 % wt. was used for each oxide (CeO2 and 10Sc1CeSZr) in the mixture, the

approximate composition in % mol is marked in each phase diagram as well as its

range of operation in case of Figure 8.3a and sintering temperature in Figure 8.3b.

The ZrO2-CeO2 system shows that cubic solid solution might indeed occur as

it was observed from the XRD analysis for the buffer layer material in Figure 6.2.

Therefore, at high temperatures of operation or sintering, an electric insulating

solid solution - Zr1-xCexO2 - could be produced. However, YOKOKAWA et al. [242]

present the phase diagram calculations and the lattice parameter estimation for

the (Zr1-xCexO2)0.8(YO1.5)0.2 system in respect of the amount of CeO2 in which a
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miscibility gap can be observed approximately when “x” is between 0.5 and 0.8, thus

indicating the presence of two different phases.

Other work has shown that CeO2-ZrO2 solid solutions demonstrated the ability

to catalyse the reaction of carbon oxidation [243]. The incorporation of zirconium

cations (Zr4+) into ceria lattice originates a modified solid solution that improves

its physicochemical characteristics and has been applied for various reactions such

as preferential oxidation of CO [244, 245].

OZAWA et al. [246] claim that ceria has an oxygen storage capacity (OSC) that

provides oxygen to the system provided with sufficient fuel and absorbs oxygen in

lean fuel conditions. However, the OSC of ceria can be increased by the incorporation

of Zr4+ into ceria lattice and vice-versa wich leads to a decrease of cell volume thereby

lowering the activation energy for oxide-ion diffusion.

(a) (b)

Figure 8.3: Phase diagrams for (a) ZrO2-CeO2 (Adapted from Ref. [329, 330]) and
(b) ZrO2-CeO1.5 systems (Adapted from Ref. [331])

In Figure 8.4 important results are summarised. In Figure 8.4a, for instance,

maximum power densities are higher for cobalt-rich cell showing that, for both

hydrogen and methane, the cobalt content enhances the catalytic activity of the

cell. Similarly, applying potentiostatic at 0.7 V as a benchmark, cobalt-rich cell

was able to drawn more than 600 mA.cm-2 when methane was being fed, which is

a great result for an SOFC. Furthermore, the current densities for the other two

compositions were also significant when hydrogen was used whereas for methane
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as fuel, current production was poor, which suggest once more the catalytic role

of cobalt for methane utilisation. On the other hand, as total polarisation (Figure

8.4d) was significantly higher for cobalt-rich composition this might suggests this

composition is prone to carbon deposition. Polarisation effects were sensed due

to mass transport limitations since ohmic resistance (Figure 8.4c) do not change

significantly between compositions.

(a) (b)

(c) (d)

Figure 8.4: Results comparison at 850�C (a) maximum power density, (b) current
density at 0.7 V, (c) ohmic resistance and (d) total polarisation for both hydrogen
and methane as fuels.

8.4 Catalytic X Electrocatalytic conversion

A test consisting of reducing the cerium-rich powder in methane was performed in

order to determine, by Raman spectroscopy, whether carbon deposition took place.
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Raman was done firstly over a reference powder which was composed of the natural

oxidised condition of the cerium-rich powder and then compared to the reduced

powder.

In order to be reduced and aged an aliquot of the electrocatalyst was placed

in a quartz tube that served as fixed bed in which methane was flushed at 850�C

during 2 hours. After cooling, the reduced material was scanned with the Raman

microscope in several spots as explained previously in details in Section 4.5.1.

The results are shown in Figure 8.5 where the oxides of the reference powder can

be seen, and clearly the peaks at 1338, 1580 and 2660 cm-1 indicating carbon presence

regarding G, D and 2D bands, respectively, over the reduced powder. Therefore it is

important to point out that the bimetallic operated cells did not show any evidence

of carbon deposition over their Raman spectroscopy which can be revisited in Figure

6.12 of Section 6.5.

Raman spectroscopy results for the powder reduced in methane suggests that

when no electrochemical reaction is involved, methane cracking takes place thus

depositing carbon. This result suggests that a similar phenomenon will occur when

the cells are kept under OCV operation for long periods. Therefore, for the cells

to be properly operated, they should be under charge constantly otherwise cracking

will prevail. JIAO et al. [332] demonstrate that even with a nickel-based cell they

were capable of operating under a specific working current suppressing coking.

The results from gas cromatograph evidenced that methane’s electrochemical

oxidation occurred since the amounts of carbon oxides increased as charge was being

applied. The ability of each composition to displace the reaction towards full or

partial oxidation was also identified, the former being the most desirable path. For

that matter, the cobalt-rich composition showed to be the most promising one not

even for its higher power and current densities but also for its ability to promote

mainly full methane oxidation at intermediate temperatures such as 775-800�C.
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Figure 8.5: Raman spectroscopy and carbon deposition assessed on a reference pow-
der and on a powder reduced with methane for 2 hours at 850�C.

8.5 Carbon deposition considerations

The possible reactions whilst using methane directly as fuel or in reforming processes

which have been vastly studied in the literature [105–107, 117–119, 333–339] are

listed in Table 8.1. It has to be pointed out that steam reforming (Case 1) will

anyway start to take place once steam is produced by the electrochemical reactions

(Cases 3 and 4) involving hydrogen. Yet, as carbon dioxide is produced whether by

electrochemical oxidation or water-gas shift reaction (Case 7), dry reforming (Case

2) can also occur. In addition, hydrogen and carbon monoxide will be produced

and thus used as direct fuels as expected (Cases 5 and 6). Cracking and Boudouard

reactions are the paths that are to be avoided since besides their high carbon content

no oxygen source are considered for further oxidation and the remaining carbon

produced is most likely to stay adsorbed over the catalyst surface.

Referring to Table 8.1, Figure 8.6 shows the position of each possible reaction

in the ternary phase diagram for C-O-H from 750 to 1000�C. The phase diagram

points out the need of oxygen presence to oxidise the carbon after the reactions

with methane. It can be observed that for the reforming cases, the oxygen content

whether as steam or carbon dioxide promotes the carbon oxidation and these are
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Table 8.1: Possible paths of methane’s reaction and its products.

Case# Reaction Name Reaction C [% mol] O [% mol] H [% mol]
1 Methane Steam Reforming CH4 +H2O ⌦ CO + 3H2 12.50% 12.50% 75.00%
2 Methane Dry Reforming CH4 + CO2 ⌦ 2CO + 2H2 25.00% 25.00% 50.00%
3 Total Electrochemical Oxidation CH4 + 4O2� ⌦ CO2 + 2H2O + 8e� 11.11% 44.44% 44.44%
4 Partial Electrochemical Oxidation CH4 +O2� ⌦ CO + 2H2 + 2e� 16.67% 16.67% 66.67%
5 Hydrogen Electrochemical Oxidation H2 +O2� ⌦ H2O + 2e� 0.00% 33.33% 66.67%
6 Carbon Monoxide Electrochemical Oxidation CO +O2� ⌦ CO2 + 2e� 33.33% 66.67% 0.00%
7 Water-Gas Shift CO +H2O ⌦ CO2 +H2 20.00% 40.00% 40.00%
8 Methane Cracking CH4 ⌦ C + 2H2 20.00% 0.00% 80.00%
9 Boudouard Reaction 2CO ⌦ C + CO2 50.00% 50.00% 0.00%

situated right on the edge for carbon formation for the presented range of tempera-

tures and thus need to have the oxidiser in excess when doing reforming processes.

However the electrochemical oxidation reactions (Cases 3 and 4) show to be more

suitable to avoid carbon formation whatsoever whereas cracking and Boudouard are

the paths that will definitely form carbon (Cases 8 and 9).

Figure 8.6: C-O-H ternary phase diagram showing the cases listed in Table 8.1.

Work has always been focused to avoid cracking and Boudouard reactions over

nickel surfaces since this catalyst absorbs carbon strongly. Hence, ceramic barriers

are used whether to promote internal reforming/partial oxidation before nickel layers

[340] or even as diffusion barriers that diminish coking [341]. In addition, direct

internal reforming is also an alternative. However, there is a penalty in system’s

efficiency because of the excess of steam or carbon dioxide used [342, 343].

126



Some work in the literature has shown the influence of reducing technique over

cells performance in methane [273–275, 344, 345]. For instance, MALLON and

KENDALL [273] show huge differences in cells power densities both in hydrogen

and methane as well as carbon deposition when cell was reduced in low or high

temperatures. They called “high temperature reducing strategy” when the cell was

exposed to hydrogen at 850�C whereas “low temperature reducing strategy” was

when the cell was exposed to hydrogen with increasing temperature from room

temperature to 850�C. The authors explain that using the former technique, nickel

particles became coarse and with low surface area due to the high temperature,

thus with high contiguity of the nickel phase which explains the reason for an alike

performance on both fuels. On the other hand, whilst reduced from low temperatures

as the latter, nickel particles were smaller and more dispersed in the beginning which

explains lower performance with hydrogen as fuel whereas when methane was fed

carbon deposition increased the connectivity between nickel particles.

Figure 8.7: OCV for all the compositions tested under hydrogen in several temper-
atures and methane at 850�C.

Another evidence that might suggest coking is the increase on OCV when oper-

ating with methane [273] on both bimetallic cobalt-rich and monometallic cobalt-

cerium compositions. This points out that an excess of cobalt might lead to carbon

formation thus premature cell degradation. The bar graph in Figure 8.7 depicts

the differences of OCVs for all five compositions tested with hydrogen at different
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temperatures with methane at 850�C, showing that voltage for cobalt compositions

were 1.24 and 1.22 V whereas for the other compositions, OCVs in methane were

always lower than in hydrogen as fuel. However, the OCV between 1.0 and 1.2 V for

methane direct utilisation is consistent with the literature both for theoretical cal-

culations [346] and experimental reports [347, 348]. In addition, negligible amounts

of carbon were spotted from TPO for all three bimetallic compositions.

Some work has been reporting the ability of copper on preventing coking [96–98].

LEE et al. [96] has shown that a small addition of copper on a cobalt-based catalyst

has decreased carbon deposition from 200% wt. to 5% wt. whilst operating with

methane.

Finally the test with the three bimetallic compositions has shown that the cobalt-

rich composition is the most promising composition. The monometallic compositions

have indicated the importance of copper to avoid coking since monometallic ceria-

cobalt has its surface covered with carbon and none of this was experienced over any

bimetallic composition. The TPO analysis was the final evidence that no significant

carbon had remained on the anode after the operation with methane as fuel. For

further conclusions, it may be worth it long-term tests with different duration, fol-

lowed by TPO after each test (e.g 100, 500, 1000 hours) to confirm that the amount

of carbon formed is indeed negligible and it does not increase in time.

8.6 Final considerations

As a final discussion, results from similar works in the literature are summarised

and compared to this work in Table 8.2. Results from the work of FUERTE et al.

[101] are are lower than this work both in hydrogen and methane as fuels. Yet, some

of their best results with methane are in fact using a H2+CH4 mixture rather than

pure anhydrous methane.

However, results from LEE et al. [102] and LEE et al. [103] are whether similar

or higher than the present work. Still, it has to be considered that in, their cases, an

anode-supported cell was used whereas for the present work an electrolyte-supported
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configuration was the case. There are some further work such as microstructure

optimisation, cell configuration, cells scaling-up area and so on, which might enhance

even more the performance of the cells.

Table 8.2: Results from similar work compared to this work.

Fuel Temperature FUERTE et al. [101] LEE et al. [102] LEE et al. [103] This Work

Hydrogen
700�C — — — 300 mW.cm-2

750�C 93 mW.cm-2 — — 460 mW.cm-2

800�C — 700 mW.cm-2 570 mW.cm-2 560 mW.cm-2

aMethane

bButane

cMixtures H2+CH4

700�C — — 100b mW.cm-2 —
750�C 13a / 76c, mW.cm-2 — — —
775�C — — — 160a mW.cm-2

800�C — 260a mW.cm-2 360b mW.cm-2 210a mW.cm-2

825�C — — — 260a mW.cm-2

850�C — — — 416a mW.cm-2
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Chapter 9

Overall Conclusions

A ceria-based anode was successfully developed with the addition of cobalt and

copper with the ability to operate with methane with proven resistance to coking.

The electrocatalyst synthesised was produced as isolated oxide phases which was

confirmed by Rietveld refinement. In addition, the powder has previously shown its

ability to reduce and absorb hydrogen, proved by the temperature-programmed

reduction analysis. Moreover, TPR has shown the steps of oxide decomposition

in compliance with what is observed in the literature. DC-electrical conductivity

has shown that even as oxides the material have shown conductivities as high as

1 S.cm-1. Although DC-conductivity test did not represent in-operando condition,

further impedance results have shown the ability to operate either with hydrogen or

anhydrous methane as fuels.

The development of the buffer layer was the element that brought viability for

this anode configuration to operate with performances higher than 500 mA.cm-2

both in hydrogen or methane as fuel, enhancing the quality of the anode/electrolyte

interface. Results reproducibility was confirmed since tests were run in replicas in

different test rigs.

The GC-coupled tests gave straightforward conclusions about the presence of

electrochemical oxidation of methane when operating the cells under load. More-

over, from GC analysis, the cobalt-rich was selected as the best material, since its

operation at 800�C delivered the highest performance and was more prone to full
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oxidation of methane which enhances the overall efficiency of the reaction. The

monometallic compositions made the role of each metal very clear showing the cat-

alytic ability of cobalt and the virtue of preventing coking in addition to the role of

enhancing electronic conductivity played by copper.
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Insights for future work

– To perform long-term tests aiming for stability and coke resistance over time

– To build and test short stacks with the developed material and eventually

larger stacks with over 500 W;

– To develop anode-supported cells using a porous electrolyte scaffold impreg-

nated with anode material;

– To perform further optimisation of Ce:Co:Cu molar ratios seeking the best

trade-off between coking and catalytic activity;

– To run FIB analysis to help microstructure understanding, especially concern-

ing the distribution of TPBs.
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Appendix I - Materials and Equipments

Table 9.1: List of materials and specifications sorted alphabetically

Reference Name Abreviation Formula Manufacturer Comercial Name Purity
MT-01 Ammonium hydroxide solution 35% Amonia NH4OH Fisher Scientific —– —–
MT-02 Cerium (III) nitrate hexahydrate —– Ce(NO3)3.6H2O Aldrich —– 99.00%
MT-03 Citric acid monohydrate —– C6H10O8 Sigma-Aldrich —– —–
MT-04 Cobalt (III) nitrate hexahydrate —– Co(NO3)2.6H2O Sigma-Aldrich —– 98.00%
MT-05 Copper (II) nitrate trihydrate —– Cu(NO3)2.3H2O Sigma-Aldrich —– 99.00%
MT-06 Scandia Ceria Zirconia Electrolyte ScCeSZ Patented Fuel Cell Materials HIONIC —–
MT-07 Scandia Ceria Zirconia powder ScCeSZ Sc0.1Ce0.01Zr0.89O2 DKKK —– —–
MT-08 Silver conductive paste - DAD-87 Silver paste —– Shanghai Inst. of Resin —– —–
MT-09 Silver gauze 80 mesh - Silver mesh —– Alfa Aeser —– —–
MT-10 Silver wires 0.25 mm Silver wires —– Scientific wire company —– 99.99%
MT-11 Strontium Lanthanum Manganite LSM La0.8Sr0.2MnO3 Praxair —– —–
MT-12 Terpineol Vehicle —– —– Fuel Cell Materials —– —–
MT-13 Terpineol Vehicle —– —– HERAUS T-100 —–
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Table 9.2: List of equipments and manufacturer sorted alphabetically

Reference Name Manufacturer

EQ-01 Carbolite Furnace Carbolite

EQ-02 EXAKT Model 50 Three Roll mill EXAKT

EQ-03 Gas Chromatogrpher GC-2014 Shimadzu

EQ-04 Magnetic Stirrer - IKA RET IKA

EQ-05 Particle size distribution - Mastersizer 2000 Malvern

EQ-06 pH meter Mettler - Toledo Toledo

EQ-07 Planetary mill - RETSCH -PM400 RETSCH

EQ-08 Quantachrome ChemBET Pulsar TPR/TPD Quantachrome

EQ-09 Raman spectroscopy - Renishaw inVia Renishaw

EQ-10 Screen printing machine DEK

EQ-11 Screen printing machine - Aurel 900 Aurel

EQ-12 SEM - JEOL JSM-6460LV JEOL

EQ-13 Solartron Solartron

EQ-14 Thermogravimetry - NETZSCH TG 209 F1 NETZSCH

EQ-15 Thermometer - IKA ETS-D6 IKA

EQ-16 Vecstar Furnace Vecstar

EQ-17 X-ray diffractometer Bruker D8 Bruker

EQ-18 X-ray diffractometer Shimadzu 6000 Shimadzu

EQ-19 X-ray fluorescence Spectrometer - Bruker S8 Tiger Bruker
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Table 9.3: Equivalences as metals to oxides for each produced composition.

Parameter [%] Ce:Co:Cu - 2:1:1 Ce:Co:Cu - 1:2:1 Ce:Co:Cu - 1:1:2 Ce:Co:Cu - 1:1:0 Ce:Co:Cu - 1:0:1

Ce [mol] 50.00% 25.00% 25.00% 50.00% 50.00%

Co [mol] 25.00% 50.00% 25.00% 50.00% 0.00%

Cu [mol] 25.00% 25.00% 50.00% 0.00% 50.00%

Ce [mass] 69.59% 43.58% 42.96% 70.39% 68.80%

Co [mass] 14.63% 36.66% 18.07% 29.61% 0.00%

Cu [mass] 15.78% 19.76% 38.97% 0.00% 31.20%

CeO2 [mol] 60.00% 37.50% 30.00% 75.00% 50.00%

Co3O4 [mol] 10.00% 25.00% 10.00% 25.00% 0.00%

CuO [mol] 30.00% 37.50% 60.00% 0.00% 50.00%

CeO2 [mass] 68.29% 41.76% 41.83% 68.20% 68.39%

Co3O4 [mass] 15.92% 38.95% 19.51% 31.80% 0.00%

CuO [mass] 15.78% 19.30% 38.66% 0.00% 31.61%
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Appendix II - Impedance Parameters

Table 9.4: Frequencies at imaginary maxima points and real impedance values with hydrogen as fuel at various temperatures.

Maxima Variables
Cerium-rich Cobalt-rich Copper-rich

750�C 800�C 850�C 750�C 800�C 850�C 750�C 800�C 850�C

1st Maximum
Frequency [Hz] 19,953.00 25,119.00 25,119.00 6,309.60 15,849.00 10,000.00 316.23 10,000.00 12,589.00

Z’ [⌦.cm2] 0.30 0.21 0.16 0.43 0.24 0.22 0.62 0.29 0.24

2nd Maximum
Frequency [Hz] 0.79 1.26 2.00 15.85 25.12 31.62 0.20 0.32 0.50

Z’ [⌦.cm2] 1.60 0.63 0.42 1.16 0.56 0.44 1.91 1.05 0.69
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Table 9.5: Frequencies at imaginary maxima points and real impedance values with methane as fuel at 850 �C.

Maxima Variables Cerium-rich Cobalt-rich Copper-rich

1st Maximum
Frequency [Hz] 31,623.00 15,848.93 15,848.93

Z’ [⌦.cm2] 0.16 0.22 0.27

2nd Maximum
Frequency [Hz] 0.50 0.01 0.25

Z’ [⌦.cm2] 0.82 6.07 1.41
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Table 9.6: ECM parameters for impedance fitted data for the CeCoCu compositions operated with hydrogen.

Circuit Element Cerium-rich Cobalt-rich Copper-rich
750�C 800�C 850�C 750�C 800�C 850�C 750�C 800�C 850�C

L1 8.16E-08 7.91E-08 7.68E-08 1.58E-07 1.33E-07 1.54E-07 1.42E-07 1.35E-07 1.25E-07
R1 0.21582 0.13565 0.10633 0.39893 0.22889 0.21422 0.34656 0.25147 0.21853
R2 0.85418 0.53454 0.34902 0.87143 1.50000 0.28714 0.71884 0.33454 0.16666
QPE1-Q 0.20810 0.24786 0.30478 0.00918 5.00000 0.01351 0.00199 0.00471 0.00375
QPE1-n 0.86147 0.84524 0.84126 0.76902 0.35937 0.69796 0.55205 0.49453 0.62396
R3 0.41505 0.23973 0.16606 2.08100 0.48892 1.13900 1.72400 0.90239 0.63875
QPE2-Q 0.00257 0.00352 0.00516 0.15538 0.01778 2.49800 0.42993 0.53765 0.63522
QPE2-n 0.37698 0.33119 0.35961 0.39898 0.65473 0.51898 0.86415 0.85357 0.74245
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Table 9.7: ECM parameters for impedance fitted data for the CeCoCu compositions operated with methane at 850 �C.

Circuit Element Methane as Fuel 850�C
Cerium-rich Cobalt-rich Copper-rich

L1 6.91E-08 1.52E-07 1.04E-03
R1 0.07508 0.22094 0.25105
R2 0.97566 11.67000 1.84400
QPE1-Q 0.28450 0.40620 0.30190
QPE1-n 0.83612 0.70267 0.87357
R3 0.22454 0.18502 0.20706
QPE2-Q 0.00300 0.00957 0.00515
QPE2-n 0.30375 0.73455 0.59869
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Table 9.8: ECM parameters for impedance fitted data for the CeO2-Co3O4 and CeO2-CuO compositions operated with hydrogen.

Circuit Element CeO2-Co3O4 CeO2-CuO
750�C 800�C 850�C 750�C 800�C 850�C

L1 1.53E-07 9.29E-08 1.14E-07 1.99E-07 1.95E-07 1.94E-07
R1 0.36734 0.23348 0.15285 0.41959 0.26754 0.12522
R2 3.10500 1.21200 0.33387 3.42800 0.67289 0.44083
QPE1-Q 0.50243 0.00336 0.00629 0.63866 0.00175 0.00250
QPE1-n 0.88202 0.69348 0.59489 0.86927 0.44478 0.30066
R3 1.98100 1.84300 1.20900 1.15600 1.88200 1.35500
QPE2-Q 0.00183 0.64274 1.83000 0.00096 0.83476 0.88216
QPE2-n 0.64881 0.72455 0.64265 0.49211 0.84072 0.75873
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Table 9.9: ECM parameters for impedance fitted data for the CeO2-Co3O4 and CeO2-CuO compositions operated with methane at 850�C.

Circuit Element Methane as Fuel 850�C
CeO2-Co3O4 CeO2-CuO

L1 1.08E-07 1.87E-07
R1 0.17616 1.20E-06
R2 0.52146 0.70083
QPE1-Q 0.00579 0.0017261
QPE1-n 0.62752 0.1829
R3 3.29E+14 3.099
QPE2-Q 0.96919 0.96182
QPE2-n 0.66628 0.81697
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