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“Cause every night I lie in bed 

The brightest colors fill my head 

A million dreams are keeping me awake 

I think of what the world could be 

A vision of the one I see 

A million dreams are all its gonna take 

A million dreams for the world we're gonna make” 

Benj Pasek 
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        Produtos tubulares de alta performance e qualidade são essenciais para a indústria 

de óleo e gás desde a extração destas commodities até a distribuição do produto para a 

sociedade. Os produtos tubulares e as ferramentas utilizadas para fabricação destes 

produtos são rigorosamente controladas pelos processos de qualidade industriais, tendo 

como sua principal etapa as inspeções não destrutivas. Desta forma, o desafio de 

detectar, monitorar e avaliar em tempo real estados de dano e defeitos são de grande 

relevância. Neste contexto, a inspeção de superfícies por tecnologias que possam ser 

aplicadas e monitoradas durante o processo produtivo, sem afetar o ciclo de produção, 

ganham grande importância, pois asseguram ainda mais a qualidade dos materiais 

produzidos além de habilitarem o ambiente fabril para as novas possibilidades da 

indústria 4.0. Neste trabalho foi desenvolvido uma metodologia de inspeção não 

destrutiva, baseada em correntes parasitas e métodos ópticos 3D, visando a automação 

da inspeção de superfícies para a indústria de produtos tubulares. Para tal, um protótipo 

foi construído e testado em ambiente fabril e um algoritmo para análise e classificação 

dos defeitos foi também desenvolvido. Os resultados alcançados com o sistema de 

inspeção, sensores e algoritmo, desenvolvidos neste trabalho, demonstraram a 

viabilidade da aplicação do sistema em ambientes industriais visando tanto a inspeção 

de ferramentas, quanto de produtos tubulares. 
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 High performance and quality tubular products are essential to the oil and gas 

industry, from the extraction of these commodities to the distribution of the product to 

society. Both the tubular products and the tools used to manufacture these products are 

strictly controlled by the industrial quality processes, having as its main stage the non-

destructive inspections. Therefore, the challenges of detecting, monitoring and 

evaluating in real time the damage and defects are very relevant. Within this context, 

the inspection of surfaces by technologies that can be applied and monitored during the 

production process, without affecting the production cycle, gain great importance since 

they further ensure the quality of the materials produced and enable the manufacturing 

environment for the new possibilities of industry 4.0. The work carried out in this thesis 

develops a non-destructive inspection methodology, based on Eddy currents and 3D 

optical methods, aiming at the automation of surface inspection for the tubular products 

industry. For this purpose, a prototype was built and tested in a factory environment and 

an algorithm for analysis and classification of defects was also developed. The results 

achieved with the inspection system, sensors and algorithm developed in this work, 

demonstrates the feasibility to apply the system in industrial environments aiming at 

both the inspection of tools and tubular products. 
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1. Introduction 

 

High performance and quality tubular products are essential to the energy sector, 

as an example, the oil and gas industry, where tubular goods are used to extract these 

commodities, in onshore or offshore environments, to the distribution of the final 

product to society. Both the tubular products and the tools used to manufacture these 

products are strictly controlled by an industrial quality process, having as its main stage 

the non-destructive inspections. Therefore, the challenge of detecting, monitoring and 

evaluating in real time damage and defects in both the production tools and the products 

are very relevant. Within this context, the inspection of surfaces by technologies that 

can be applied and monitored during the production process, without affecting the 

production cycle, gain great importance since they further ensure the quality of the 

materials produced and enable the manufacturing environment for the new possibilities 

of industry 4.0. 

Non-destructive testing (NDT) methods are being used on a pipe mill, but there is 

still a gap for new developments for the automation of the NDTs for surface inspection. 

The most relevant companies of tubular goods industry have an integrated and 

continuous pipe mill, producing on average one pipe every minute. These pipes are 

submitted to several quality processes during its production, held trough non-destructive 

inspections to attend the necessary quality standards of the product and specification of 

the customers, being the surface inspection one of the most important and strategic 

inspection stage (EN 13018, 2016). The surface inspection of pipes has to detect 

superficial defects that are typically created on inner and outer surfaces of pipes. These 

defects mostly occur on the outer surface of pipes, due to imperfections on the outer 

surfaces of the rolling tools used during the rolling process, heavy mechanical handling, 

and up to the very last handling process. Generally, these defects are superficial holes, 

dents, “molly whopper” or bore slag, mechanical marks and straightening machine 

marks that make the traditional NDT techniques not efficient enough in detecting them. 

Besides these defects, the mechanical-metallurgical process used in the production of 

seamless pipes can itself cause the formation of other defects, such as folds and bends. 

However, the surface inspection usually performed through visual inspection is 

highly dependent on the inspector who performs it, since the only document generated 

after the inspection is the technical report created by the operator that determines 
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whether or not the pipe is to be sent to the next inspection steps. Thus, the surface 

inspection, does not produce enough information for a later verification of the test 

results, when necessary, and do not attend the new time frame of the production line, so 

that companies remain competitive on the market. In addition, there is also a physical 

limitation and time constraints for this kind of procedure, since the inspector would 

have to inspect a nearly twelve meters long pipe about every minute. These issues can 

lead to occasional approvals of non-conforming pipes resulting not only in wastage of 

resources in further stages of the quality process, but also undermine the reliability of 

the quality assurance process. Therefore, the need for a new way to improve the visual 

inspection evaluation is clearly needed to, perceptible that not only meets the needs of 

production line speed, but also the necessity and inherent quality of the pipes (AZANI, 

GUITIERREZ et al., 2008). 

A surface inspection solution that embraces inspection methodology and data 

processing regarding the boundary conditions of industrial production is not currently 

found commercially on the market to be applied respecting the industrial production 

environment. To this end, the present work studied electromagnetic and optical 

techniques in order to develop an inspection methodology capable of detecting surface 

defects that occur during the production of seamless tubes. Besides that, it is of 

fundamental importance that the process does not interfere with the lead time of 

production and therefore data should be evaluated automatically and in real time. The 

defects evaluation is understood not only in the detection of imperfections, but also in 

their dimensioning and possible classification. For that purpose, an algorithm was 

developed to evaluate simultaneously the raw data from these techniques in order to 

automatically recognize and classify the defects in-line and on-line.  

For the development of this project, the structured light system was initially used 

to inspect the surface of the pipes samples with the defects, generating the reference 

data of this project. Based on the data obtained, the algorithm of the proposed algorithm 

was developed and validated. Additionally, two inspection methodologies based on 

Eddy current and laser scanning were developed and optimized to meet the presented 

boundary conditions, as well as their results were processed and analyzed in the 

developed algorithm.  

The results obtained show the efficiency and complementation of the 

electromagnetic and optical techniques developed, being able to detect defects with 

approximate dimensions of up to 1 mm³ and the algorithm developed showed to be able 
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not only to recognize the defects automatically, but also to classify them based on their 

geometry and orientation, having just small deviations. Thus, the proposed solution has 

a great potential for industrial application in order to improve the quality of pipes' 

surface without modifying the production lead line. 
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2.  Theoretical bibliographic review 

 

1.1    Electromagnetic techniques 

2.1.1. Eddy current 

The Eddy Current (EC) test, also known as Foucault Current, is a non-destructive 

inspection technique based on the introduction of an alternating electrical current in the 

material to be inspected and the observation of the interaction between the magnetic 

field generated by the probe and the induced one in the material inspected (BOWLER, 

2019). 

The basic principle of EC operation is similar to that of a transformer, where the 

probe coil corresponds to the primary component and the material inspected to the 

secondary component of the transformer. According to the law of Ampère, when a coil 

is excited by an alternating current, a primary alternating magnetic field is generated. 

By approaching this coil to the surface of an electrically conductive material, the field 

generated by the coil induces an electric current in the material, named as “eddy 

currents”. These generated currents give rise to a new magnetic field, known as a 

secondary field, which if opposes the variations of the primary field. The interaction 

between the primary and secondary fields modifies the electrical impedance of the coil 

and such a variation of impedance is the physical variable monitored during the test, as 

can be seen in Figure 2.1 (CAMERINI, 2018) (MARTIN, 2011).  

 

 

Figure 2. 1: EC inspection principle: a) generation of primary magnetic field, b) 

induction of an electric current, c) generation of secondary magnetic field. Adapted 

from (OLYMPUS, 2019). 
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If the region of the inspected material has some discontinuity, it will present a 

flow of ECs smaller than the regions exempt from them, because the defective region 

will have greater resistance to the passage of electric currents. This difference in EC 

flow results in a change in coil impedance, which is constantly monitored, being 

possible to differentiate between regions with and without defect. On the other hand, if 

the material presents microstructural variations, they also generate changes in the flow 

of ECs, locally modifying permeability and electrical conductivity, making it possible to 

compare the microstructure between different materials. The signal measured thereon 

will depend on the geometrical characteristics of the coil, the test frequency, the 

electrical and magnetic properties of the material, the sample dimensions and the 

existence of discontinuities in the sample (CORREA, 2017).   

In the testing of ECs, the use of reference standards in the adjustment and 

calibration of the equipment is essential, since the signals are affected by many different 

variables. In consequence, small changes (gain, rotation and etc) in the configuration of 

the equipment can drastically change the appearance of a signal, defining this technique 

as comparative. As with most non-destructive testing methods, the most useful 

information is obtained when you compare the results of an unknown object with the 

results of a similar object, with well-known characteristics and defects (CORREA, 

2017). Some of the advantages and limitations of the ECs over other non-destructive 

techniques are resumed in the Table 2.1 (SILVA, 2018).  

 

Table 2. 1: Advantages and limitations of EC test (SILVA, 2018). 

Advantages Limitations 

It is highly sensitive to small cracks and 

defects on the surface and subsurface. 
The material needs to be conductive. 

The material to be analyzed needs little 

or no preparation. 

More operational ability and training are 

needed to use this technique. 

The probe could have no contact with 

the material. 

The location of the discontinuity cannot be 

parallel to ECs. 

Capable of inspecting materials with 

complex geometries and various sizes. 
Calibration reference is needed. 

In general, the equipment has relatively 

low cost. 
Limited penetration depth. 

Several sensors can be associated to 

perform a full body inspection at once. 

Surface roughness can cause high 

interference. 
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One of the great advantages of EC technique over other non-destructive methods 

is that it does not require physical contact between the coil and the specimen to be 

inspected, because it is based on the principle of electromagnetic induction. However, a 

limitation compared to other conventional NDT techniques, such as ultrasound, is the 

penetration capability into the inspected material. In thick and/or high magnetic 

permeability materials, limited penetration of the EC technique makes the inspection 

only possible for the surface or subsurface layers (CAMERINI, 2012). This occurs 

because electric currents have maximum density on the surface that decreases as they 

penetrate the material. The pellicular effect, or skin effect, is responsible for this fall and 

acts as follows: ECs are generated on the surface, which create a secondary field that 

opposes the primary, reducing it. Thus, the layer just below the surface is influenced by 

a smaller primary field, reducing the induced currents (GRIFFITHS, 1999). It has been 

verified that there is an exponential relationship between the depth and density of 

currents. The depth at which the current intensity is decreased to 36.8% (1/e*100%) of 

its surface value is defined as the standard penetration depth (δ). A relationship can be 

developed between the frequency of excitation (f), the electrical conductivity (σ) and 

the magnetic permeability (μ) with the standard depth of penetration of the material, as 

observed in the Equation 2.1 (SILVA, 2016). 

        Equation 2. 1 

Since electrical conductivity and magnetic permeability also influence penetration 

depth, ferromagnetic materials (which have high magnetic permeability) will exhibit 

induced ECs with reduced penetration depth. By reducing the frequency of excitation, a 

greater depth of penetration is achieved; however, the current density at the surface is 

reduced. Therefore, it is necessary to select a given optimal operating frequency, so that 

it is sufficient to ensure the flow of ECs with a good penetration depth, as illustrated in 

Figure 2.2 (CORREA, 2017). 
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Figure 2. 2: Penetration depth for frequencies of 200 Hz and 10 kHz for a ferromagnetic 

steel. Adapted from (CORREA, 2017). 

 

Electrical impedance (Z) is the total opposition that a circuit offers to the flow of 

an electric current variable in time. Impedance is measured in ohms (Ω) and can be 

expressed as a complex number, having a real part, equivalent to resistive component 

(R), and an imaginary part, given by inductive reactance (XL) and capacitive reactance 

(XC), as can be seen in Equation 2. However, operating in frequency bands up to a few 

MHz, the influence of capacitive reactance is negligible, so only the inductive reactance 

is usually considered (ABU-NABAH, NAGY, 2007) (ABU-NABAH, 2018). 

     Equation 2. 2 

The relevant components are, therefore, XL and the R that can be represented in a 

vector diagram in which XL is on the ordinate axis and R on the abscissa axis, as can be 

seen in Figure 2.3 (NDT RESOURCE CENTER, 2019). The term "impedance plane" is 

used to designate this diagram, which, in general, is how the EC equipment presents the 

results to the operator. What the equipment measures are the amplitude and phase of a 

received signal in relation to the coil excitation signal (FREITAS, 2009).  
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Figure 2. 3: Impedance plane diagram. Adapted from (NDT RESOURCE CENTER, 

2019). 

 

Generally, the variation in signal amplitude shows discontinuities, and the 

variation in phase angle shows changes in material properties. The analysis of the 

results of an EC inspection from the impedance plane is the most usual way and is 

present in most commercial equipment (BOWLER, 2019). The impedance plane, of 

Figure 2.4, illustrates the variation of impedance according to the magnetic properties of 

the material (SILVA, 2016).  

 

 

Figure 2. 4: Impedance variation generated by the change of the inspected 

material properties. Adapted from (SILVA, 2016). 

 

The curve behavior is different for ferromagnetic and non-ferromagnetic 

materials. Although, in the both cases, they have the same starting point, called the 

“equilibrium point”. It indicates when the probe is in the air, acting only with the 

primary magnetic field (SILVA, 2018). Approaching the probe, positioned in air, to a 

non-ferromagnetic material, (as the aluminium in Figure 2.4), the resistive component 
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increases as the ECs are generated in the material, draining energy from the coil. The 

inductive reactance, however, decreases due to the magnetic field generated by the 

currents that opposes the coil, resulting in a smaller magnetic field for the inductance. In 

other hand, when the probe approaches a ferromagnetic material (as the steel in Figure 

2.4), there is a different behavior than that of non-ferromagnetic materials. In this case, 

the inductive reactance increases given its high magnetic permeability, which 

concentrates the magnetic field of the coil in the steel. This concentration overlaps with 

the magnetic field generated by ECs, becoming a predominant field (GARCÍA, GIL et 

al., 2011) (CHAIBA, AYAD et al., 2018). 

A major advantage of EC testing is that the probe can be developed according to 

the desired application. There are several types of EC probes that are classified 

according to the mode of operation and the configuration of the coil. Below will be 

described the main arrangements used in inspections. 

 

Differential inductive probes: 

Consisting of two coils, the differential probes are characterized by their response 

being a signal of difference between the coils that compose the probe. Being the 

constituent’s coils of the probe with the same parameters, however with the inverted 

polarity, the field generated by both coils is the same in module, but with inverted 

direction. Figure 2.5 presents an example of a differential probe composed by two 

independent coils and the signal generated by a differential probe passing through a 

defect. This signal in format of a "loop" or a butterfly tie is characteristic of differential 

probes and is known as lissajou (García, Gil et al., 2011) (CAMERINI, 2012). 

 

 

Figure 2. 5: Smaller characters: a) Example of a differential probe composed by two 

independent coils; b) Illustration of the signal generated by a differential probe passing 

through a defect (CAMERINI, 2012). 

a) b) 
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The most notably advantage of this configuration is the capacity to detect small 

defects due to its great sensitivity. However, one disadvantage is that the signals may be 

difficult to interpret, since they are composed by a difference of two absolute signals, 

increasing the data analysis complexity. Many methodologies directly applied to 

analyze the absolute signals, therefore, must be adapted to this kind of signal, and, 

oftentimes, the information given by them is intrinsically different. For example, when 

it comes to very large defects, where the length of the defect is greater than the spacing 

between the coils, the signal inside the defect can often be "zero", or have its intensity 

greatly reduced. This happens because both coils are with the same response of the 

defect, what does not mean, however, that the defect does not exist (CAMERINI, 2012). 

 

Hybrid probes: 

 They are probes based on magnetic field measurement using magnetic field 

sensors. These sensors can be: SQUID, Hall effect, anisotropic resistance magnet 

(ARM), giant magneto resistance (GMR), etc, and will be further explored in the next 

section (KRAUSE, KREUTZBRUCK, 2002) (EISENBEIS, 2014). These sensors 

usually have small dimensions, high sensitivity for a wide frequency range, low noise 

and low cost (CORREA, 2017). 

A very common hybrid configuration is the mixing of differential and reflection 

probes, where the windings for detection are in a differential configuration and the coil 

of excitation involving them (CAMERINI, 2012). The sensors are placed close to the 

surface where the ECs are created, as can be seen in Figure 2.6 (CORREA, 2017). It can 

also be noted that although the combination of the solid state sensor with EC is an 

excellent tool to improve the test response, it is important to note that solid state sensors 

generally have a limitation in relation to their frequency and EC testing is usually 

performed at higher frequencies. Therefore, it is important to pay attention to the 

compatibility of the frequencies of action during the test. 
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Figure 2. 6: Positioning of the magnetic sensor in the center of a coil. Adapted from 

(CORREA, 2017). 

 

An example of a hybrid probe is one that uses a Hall effect sensor to detect 

changes in the magnetic flux leaking from the test surface. Hybrid probes are usually 

specially designed for a specific inspection application (NDT RESOURCE CENTER, 

2019). However, these secondary sensors can be also applied independently of the EC 

probes, even though associated to its results. For example, when Hall sensors are used 

in profilometry systems, been capable of reconstruct surface defects in parallel with the 

EC, as will be showed in the next section. 

 

Comparison between different magnetic field sensors: 

The selection of the most suitable sensor type for the EC probe depends of several 

parameters that determine its efficiency. These parameters include, for example, the 

magnetic field range, the operating frequency band and sensor dimensions (GARCÍA, 

GIL et al., 2011). As showed before, in the common EC test probes, the coil acts as the 

magnetic sensor itself, but other types of sensors can be used in hybrid probes.  

The use of coils as transducers offers the advantage of being very precise, robust, 

easy to build, and have a good signal-to-noise ratio (PEREIRA, 2014). As well, they 

have a huge dynamic range and the possibility of focusing the sensor.  Although, the 

main disadvantages of their utilization are the high induction voltage at the start of the 

signal and the fact that, at a certain scale, they are difficult to make smaller, different of 

Hall sensors, for example, that can be easily miniaturized and integrated within 

microelectronic circuits (GARCÍA, GIL, et al., 2011). Silva (2018) organized several 
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works with different probes highlighting the most important parameters used during 

inspection, as can be seen in Table 2.2 and Table 2.3. 

 

Table 2. 2: EC studies using different magnetic field sensors for subsurface crack 

detection – Part 1 (SILVA, 2018). 

Author Year Frequency 

Defect 

width 

(mm) 

Defect 

length 

(mm) 

Defect 

height 

(mm) 

Depth 

(mm) 

Type 

of core 

PICK-UP PROBES 

MOOK  2006 

350 Hz 3 100 3 8.5 Air 

100 Hz <0.1 - 25 22.5 Air 

50 Hz <0.1 - 25 28.8 Air 

ALMEIDA  2013 100 kHz - - 7 3 Air 

CARISTED

T  
2014 100 Hz 12 2 2 6 Air 

ABSOLUTE PROBES + GMR SENSOR 

DOGARU  2001 1.5 kHz 15 0.5 2 1.5 Air 

SIKORA  2003 10 - 120 Hz 0.5 - 4 16 Air 

TSUKADA  2006 50 Hz 1 25 1 6 Air 

YAMADA 2006 50 Hz 1 25 1 8 Air 

WINCHESKI 2010 185 Hz 0.13 14 1 9 Air 

HAMIA 2010 325 Hz 0.5 50 2 8 Air 

CACCIOLA 2010 60 Hz 2 2 4 4 Air 

DIRAISON 2009 
200 Hz - 4 

kHz 
0.5 2 - 10 2 7.7 Air 
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Table 2. 3: EC studies using different magnetic field sensors for subsurface crack 

detection – Part 2 (SILVA, 2018). 

Author Year Frequency 

Defect 

width 

(mm) 

Defect 

length 

(mm) 

Defect 

height 

(mm) 

Depth 

(mm) 

Type 

of core 

ABSOLUTE PROBE 

ROSELL 2012 900 Hz 0.28 12.6 5 3.04 Air 

LU 2012 
100 Hz - 10 

kHz 
- - - 5 

Air 

and 

ferrite 

BOHACOVA 2013 450 Hz - - - 4 Air 

DIFFERENTIAL PROBE 

KIM 2012 300 kHz 0.15 2 - 8 - 3 Air 

DIRAISON 2009 
200 Hz - 4 

kHz 
0.5 2 - 10 2 7.7 Air 

 

Some works will be better discussed in section 3.1, explaining better some 

important parameters and limitations for the probes and their applications. 

 

2.1.2. Eddy current and computational simulation 

Computational simulation has as one of its main purposes the execution of a 

mathematical model that reproduces in detail the real system in order to study its 

behavior (CAMERINI, 2018).  Usually a simulation refers to a computational 

implementation of the model, which is run over time under different conditions to study 

the interactions between the constituent parts of a system. This means that from a 

simulated model that accurately represents reality, it is possible to make changes to the 

model in a simple and fast way, without the need to leave the virtual environment, thus 

reducing the need for long experiments (CAMERINI, 2012) (KARTHIK, 

MATHIALAKAN, et al., 2015). 

The most common calculation method in EC simulators is the finite element 

method (FEM). The FEM is known as a mathematical model analysis method to 

represent physical problems. This modelling is done through differential equations with 
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their respective boundary conditions, solved from a division of the integration domain 

("mesh" or "grid") in a finite number of small regions ("finite elements"). From the 

mesh, functions are searched that satisfy the conditions in each element, and not in the 

entire domain (SILVA, 2018). 

The electromagnetic phenomena are described by Maxwell's equations that 

involves five vectors, dependent on position and time, being them: electric field ( ), 

magnetic field ( ), magnetic flux density ( ), electric flux density ( ) and current 

density ( ) (CAMERINI, 2012). The description Maxwell's laws containing these vector 

quantities are shown from Equation 2.3 to 2.6. being respectively Faraday's Law, 

Ampère's Law, Gauss's Law for the electric field and Gauss's Law for the magnetic 

field.  

 

                                           Equation 2. 3 

                                         Equation 2. 4 

                                            Equation 2. 5 

Being  the electrical charge density. 

                                           Equation 2. 6 

 

For the simulation of ECs, the calculation of the magnetic potential vector is 

fundamental, because from its value it is possible to obtain other electromagnetic 

quantities such as: magnetic flux density, coil impedance and other parameters (SILVA, 

2018). One of the most used applications to simulate this type of inspection is 

COMSOL Multiphysics, a cross-platform finite element analysis, solver and 

Multiphysics simulation software. As described by Camerini (2012), the EC simulations 

with COMSOL usually consists of working in models with axial symmetry, where the 

variable is the magnetic potential vector (A). In it, the main steps to perform the 

simulation consist of:  
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• Use the AC/DC module, choosing to work with induced currents in two 

dimensions with axial symmetry; 

• Define the limit region, draw the coil and the core, which are the subdomains of 

the model; 

• Specify the magnetic and electrical properties of each subdomain, as well as the 

external current density of the coil; 

• Define the boundary conditions of the problem; 

• Define the frequency to be used; 

• Create the finite element mesh. 

 

Therefore, software as COMSOL permits the simulation EC test to qualitatively 

analyze the main parameters that compose a probe (core and coil geometry, applied 

current density, metallurgical properties of the core, operating frequency and others). 

Finally, from this evaluation, it is possible, for example, to define optimal parameters 

for the probe construction (CAMERINI, 2012), reducing costs and time. 

 

2.1.3. Solid state magnetic field sensors 

Solid state sensors are characterized for having no mobile parts and must not be 

confused with transducers or actuators which react depending on the sensor response 

(GIACHINO, 1986). Among these, the magnetic field sensors, often called 

“magnetometers” (HEREMANS, 1993), have been fundamental for humanity in various 

applications since their invention. The hard drives that allowed the advance of 

computation, reliable noncontact switches that elevated the safety standards of 

airplanes, position determining sensors for various automobiles parts, and much other 

are just few examples of technologies only made possible by the existence of 

magnetometers, without even mentioning their substantial role in advanced medicine, 

factoring and research.  

There are many techniques to sense magnetic fields, most of them based on the 

intimate connection between magnetic and electric phenomena. Therefore, comparing 

various magnetic sensors for one desired application, different parameters should be 

considered – sensitivity, linearity, range, frequency bandwidth, dimensions and, mainly, 

the range of measured magnetic field. In this range, the smallest value is especially 

important, since the upper limit of this kind of sensors can theoretically be very large 
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(TUMANSKI, 2013).  In the Table 2.4 and 2.5. the characteristics of common magnetic 

sensors are resumed (TUMANSKI, 2013) (POPOVIC, FLANAGAN, et al., 1996) 

(JANDER, SMITH, et al.,  2005). 

 

Table 2. 4: Characteristics of common magnetic sensors – Part 1. 

Sensor type Physical principle Illustrations 

Magneto 

resistors 

AMR 

Based on ferromagnetic metals or 

alloys that exhibit an anisotropic 

resistivity in a magnetic field. 
 

GMR 

Is an alternation of conductive 

layers with set magnetization and 

layers with magnetization which can 

align themselves with an external 

magnetic field, acting as a spin 

filter. 

 

 

TMR 

Similar to GMR sensors with one 

difference – instead of only 

conducting layers it is used thin 

insulating spacers.  

Fluxgate sensors 

Consists of a ferromagnetic core 

wrapped with two coils, whose 

induction changes in the presence of 

an external magnetic field. 
 

Induction sensors 

Is usually in form of a coil (with or 

without ferromagnetic core) and 

according to the Faraday’s law the 

generated voltage V is proportional 

to the rate of change of magnetic 

field.  
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Table 2. 5: Characteristics of common magnetic sensors – Part 2. 

Sensor type Physical principle Illustrations 

SQUID 

Consists of two superconductors 

separated by thin insulating layers to 

form two parallel Josephson 

junctions. Can be configured as a 

magnetometer to detect incredibly 

small magnetic fields - small enough 

to measure the magnetic fields in 

living organisms. 
 

Hall Effect sensor 

The Hall effect is a property that 

manifests itself in a conductor when 

a magnetic field perpendicular to the 

current flow is applied on it. When 

this occurs, an electric potential 

difference in the conductor is 

generated, called Hall voltage. A 

Hall sensor is a semiconductor 

transducer based on this principle. 

 

 

 

Among these sensors, the Hall sensors will be discussed in more detail due to its 

interesting characteristics for inspections based on electromagnetic NDT.  

A Hall Effect sensor is a semiconductor transducer that responds under a magnetic 

field with a change in its output voltage. The Hall sensor has its working principle based 

on the Hall effect, discovered in 1889 by Edwin Herbert Hall. However, its application 

was restricted to laboratory experiments until 1950. The Hall effect is a property that 

manifests itself in a conductor when a magnetic field perpendicular to the current flow 

is applied on it. When this occurs, an electric potential difference in the conductor is 

generated, called Hall voltage, as can be seen in Figure 2.7 (CORREA, 2017) (ALI, 

YANLING, et al., 2017).  
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Figure 2. 7: Hall sensor functioning representation. Adapted from (CORREA, 2017). 

 

This voltage has direction perpendicular to the magnetic field and current, besides 

that it is proportional to both the magnetic flux density and the current that travels the 

conductor. The applied magnetic field causes a gradient of concentration of charge 

carriers throughout the conductor, generating a potential differential expressed in a 

voltage value. The Hall effect sensor has a linear response and can operate from DC 

fields up to 100 kHz frequencies. It allows directional detection and its size is relatively 

small, with the possibility to be easily miniaturized for electrical circuits, for example. 

In addition, it can withstand large magnetic fields without saturation (CORREA, 2017). 

The Hall probe consists of a thin semiconductor plate with two biasing contacts, 

through which the biasing current (I) flows, and other two contacts to measure the Hall 

voltage (VH), the sense contacts (ALI, YANLING, et al., 2017). This configuration is 

illustrated in Figure 2.8 and is described by the Equation 2.7. 

 

 

Figure 2. 8: Hall sensors contacts configuration (ALI, YANLING, et al., 2017). 
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                                          Equation 2. 7 

Where I is the biasing current in amperes, q is the charge on an electron equal to 

1.6×10-19 C, n is the carrier concentration, t is the plate thickness rn is the scattering 

factor, G is the geometrical correction factor and B is applied magnetic field density. 

The noise is one of the main limiting factors of this sensor efficiency. Noise 

determines the smallest detectable magnetic field. Various sources of noise are 

generated by the Hall device itself. They are due to thermal noise, generation-

recombination noise and flicker noise, with the total noise described as the sum of these 

three types (ALI, YANLING, et al., 2017). Other disadvantages are their limited 

sensitivity due to the silicon, and the relatively large offset (NOVKOVSKI, 2006), 

which is defined by a “measurement shift caused by the residual flux of the magnetic 

core in the transducer” (PORTAS, COLOMBEL, 2007). However, for some 

applications, other sensors types as SQUIDs and GMRs with very elevated sensitivities 

are unsuitable, turning the hall sensors the best options, beside their simplicity. 

For applications where measurement of a weak magnetic field at low temperatures 

is required, Hall sensors made of materials with high mobility and a small energy band 

gap are used. This is because these materials have a high-frequency response. However, 

such materials possess low operating temperatures and frequency limit since it doesn’t 

work above 5 kH. Other advantages of hall sensors in comparison to other magnetic 

sensors are: simple design and technology of manufacturing, thus, in general, are very 

cheap; possibility to design very small sensors, with dimensions of less than one μm and 

less invasive measurement of magnetic field due to the lack of ferromagnetic elements, 

although supplying current can generate small magnetic field (TUMANSKI, 2013).  

Even though, magnetic field measurements are considered a usual application for 

Hall sensors (TUMANSKI, 2013) they can also be used for mechanical measurements 

(proximity sensors, sensors in brushless motors and others) (Patent No. 

US8270254/EP2269054. 2009). 

The Hall sensors are solid-state magnetic field sensors with a worthy set of 

characteristics. They can be easily miniaturized for electrical circuits, can withstand 

large magnetic fields without saturation and have a high suitable sensitivity for a large 

set of applications. Among these, in the superficial and sub-superficial defect detection 

field, they can not only be used as sensors for the EC test response magnetic field 

measurement, but also independently, in mechanical profilometry, for example. This 
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application is very interesting since it can provide more information about the same 

superficial damage than EC test, but with a different physical principle and different 

characteristics.  Therefore, systems that integrate the Hall sensors to EC test have been 

more and more explored and constantly developed by the research institutes and the 

industry.  

 

1.2    Optical 3D techniques 

The 3D reconstruction of short distance objects surfaces by optical techniques is 

one of the most explored current subjects in the fields of digital photometry, computer 

vision and object recognition. This fact is due to the massive improvement of 

computational resources, to the large number of already available commercial and 

potential applications in several areas. But only with most recent progress in sensor 

technology and processing power, they have become accurate, fast and versatile enough 

to be widely used. The Table 2.6 shows the evolution of the specifications of common 

commercial image processing systems since 1985 (BREUCKMANN, 2014). 

  

Table 2. 6: Typical specifications of commercial image processing systems 

(BREUCKMANN, 2014). 

Year 
CPU / 

RAM 
Image Memory HD capacity Resolution 

1985 512 KB 2 MB 20 MB 256 KPixel 

1990 2 MB 16 MB 100 MB 1 MPixel 

2000 200 MB 100 MB GB 4 MPixel 

2010 4 GB 2 GB TB 8 MPixel 

2014 64 GB 32 GB TB 16 MPixel 

 

 

The 3D reconstruction has been widely used in medicine area for monitoring body 

parts to determine changes in the tissue or organs. In manufacturing processes, this 

technology is often required for the quality control of CNC (Computer Numeric 

Control) produced parts. More recent renowned applications can be found in reverse 

engineering, robotics, archaeology, cinema, forensics, cartography, and other fields 

(FERNANDES, 2012) (REISS, 2007). 
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A definition for “3D model” is a geometric object representation in three-

dimensional space, which provides a virtual (analytical/mathematical/digital) 

description of the shape and dimensions of the object using mathematical means. This 

representation can be based in entities as points, lines, circles, rectangles, and others. 

This description holds a set of advantages in comparison to the manipulation of the real 

object, since it is usually simpler and more practical to run experiments, perform 

measurements, and transmit results with the model. Besides that, the 3D reconstruction 

can be used to preserve the original object’s structure if its physical properties are 

compromised, what is especially interesting for engineering’s applications 

(FERNANDES, 2012) (REISS, 2007). 

By contrast, surface imaging deals with measurement of the coordinates of points 

on an object’s surface. Since these surfaces are generally nonplanar, it is described in a 

3D space, and the imaging problem is, therefore, called 3D surface imaging. The result 

of the measurement may be regarded as a map of the depth as a function of the position 

of each point in the surface of the object in a Cartesian coordinate system (GENG, 

2011). This set of dense surface data points that are presented along a 3D coordinate 

system is usually called point cloud. This cloud, after image processing treatments, is 

consolidated in the object’s 3D model. This process is also referred to as 3D surface 

measurement, range finding, range sensing, depth mapping and surface digitalization. 

When 3D information of a given surface is needed, it is necessary to choose 

between a passive and an active method. The term “active” refers to the methods that 

need of a secondary light projection source, while the “passive” ones utilize only 

ambient light (FERNANDES, 2012). Specifically, the active optical methods for dense 

measurements of object surfaces employ one or multiple light source and one or 

multiple cameras for shape acquisition. 

Generally, the 3D scanners are equipment with the ability to generate 3D models 

of real objects. There are different scanning systems used for capturing different sized 

objects (i.e. from a small tool to a large building), with a wide range of scales (i.e. from 

few mm up to tens of hundreds of meters), and so can be divided into different scanning 

systems according to range.        

 The contactless scanners in two different groups, transmissive or reflective, 

described in Table 2.7 (CURLESS, 1997).  
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Table 2. 7: Contactless scanners groups (CURLESS, 1997). 

Group Principle Main technologies 

 

Emission and detection of 

ionizing radiation. 

Computerized 

Tomography (CT-Scan) 

 

Optical (passive sensors) Stereoscopy 

Optical (active sensors) 

Time-of-flight 

Laser scanners 

Structured Light 

Non-Optical 
Microwave radar 

Sonar 

 

Only the topics related to active non-contact measurement techniques by 

reflection will be detailed discussed, due to their greater potential solution for 

automated surface inspection system.  

 

1.2.1 3D laser scanners 

The use of triangulation methods has started 5000 years with the Babylonian 

technology. After, Euklid have set the trigonometry in the occident about 2500 years 

ago, and, with the consolidations of the scientific methodology, the laws of optical 

triangulation have been enlightened by Snell van Rojen in the 17th century. However, 

3D scanners based in this principle with practical applications and able to record 3D 

images with satisfactory resolution have been realized only about 30 years ago 

(BREUCKMANN, 2014).  

There are several reasons to replace conventional contact measuring methods, 

such as CMMs, micrometers or stylus profilometers, by new approaches. Often contact 

methods are not applicable due to the fragile nature of the subject, the surface sensitivity 

to mechanical contact, the wear resistance of the equipment, very high or very low 

object surface temperature, very small object size, or the time limitation of 

measurement (GIESKO, 2007). 
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The automatic laser scanning has revolutionized 3D data acquisition. In contrast 

to the “classical” manual data acquisition techniques, like terrestrial surveying and 

analytical photogrammetry, which require a manual interpretation to derive a 

representation of the sensed objects, these new automatic recording methods allow an 

automated dense sampling of the object surface within a short time.  

There are many different types of laser scanners on the market and they have 

different specifications for different applications. However, the specifications of 

different scanners are designed with different scanning principles. Almost all these 

scanners are designed according to three different scanning principles: 1) Pulse-based; 

2) Phase based; and 3) Triangulation-based. The most accurate and robust close-range 

scanners are designed with triangulation-based techniques. These are the equipment 

applied to profilometry techniques, which are the application of interest in this work.  

Machine vision systems based on 3D triangulation are employed in a range of 

industries from automotive and electronics manufacturing to lumber mills. While the 

basic concept of measurement using triangulation is simple, there are several important 

details that must be addressed when implementing such systems. These include how 

laser-based 3D triangulation systems are configured and how laser line (LL) parameters 

are specified (LATIMER, 2015). 

In the last decade, 3D laser scanners have been widely used for quality inspection, 

surface profile measurement, and reverse engineering applications. These systems use a 

camera and a laser light to model 3D objects as the appearance of the laser spot changes 

according to the distance between the light source and the object surface (MARANI, 

ROSELLI, et al., 2013). 

The active triangulation laser scanners are based on a light beam generation, 

where either a single point scanner or a line is projected on the surface. The highlighted 

surface with irregularities is captured with a camera, which is placed at a special 

distance and angle, such that it permits an optimal profile of the highlighted features 

(MONTILLA, ORJUELA, et al., 2014). The Figure 2.9 shows graphically the laser 

triangulation configuration, and an example of a commercial scanner. This method of 

scanning is restricted in depth, because the quality of the intersection decreases with 

range. The basis, i.e. the distance from the emitter to the camera, cannot be made too 

big for practical reasons. Therefore, this type of scanners is restricted to ranges from 

millimetres to few meters (PFEIFER, BRIESE, 2007). Usually, the compact laser 

sensors are characterized by the resolution given in the micrometer scale and for short 
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ranges, laser triangulation sensors are capable to provide sub-micron resolution 

(GIESKO, 2007). 

 

a) b) 

Figure 2. 9: Schematic representation of the laser triangulation Operation for a) single 

point and b) line beams. Adapted from (LATIMER, 2015). 

 

Some of the main advantages of this equipment in comparison to other kind of 

optical scanners are the easy implementation, high 3D accuracy, repeatability rate and 

insensitivity to light environment (SANSONI, TREBESCHI et al., 2009). 

However, there are also limitations to the method caused by the nature of vision 

sensing which can influence the measurement results. The particularly significant 

effects are surface reflection, a different contrasting surface texture in the microscale, a 

shadow effect, laser beam disturbances at the edges of the object, light diffusion and 

absorption (GIESKO, 2007). In addition, there are safety constraints associated with the 

use of laser sources. Furthermore, to scan an entire surface, the laser triangulation 

equipment requires that a motor translates or rotates a part of the scanner so that the 

laser plane is swept across the surface (TÖRNBLOM, 2010). 

The laser triangulation principle is based on viewing angles measurement of a 

laser beam spot projected onto the object surface. The light quantity distribution of the 

reflected beam from the object is analyzed and the sensor detects the pixel with the laser 

light peak value. The position of the laser spot on the sensor is related to the position of 

laser beam on the object surface, as can be seen in Figure 2.10 (right). When object is 
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moved from position 1’ towards 2’, the laser beam displacement on the sensor is equal 

ds (GIESKO, 2007). 

 

a) 

 

b) 

Figure 2. 10: Illustrations of the laser triangulation principle. a) the main parts of a 

profilometer head. b)  schematic illustration of the triangulation process (GIESKO, 

2007). 

 

According to Giesko (2007) the measurement sensitivity is expressed as a 

function of the triangulation angle Θ, the base distance Z and the focal distance f 

according to Equation 2.8: 

                                            Equation 2. 8 
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For the 3D reconstruction of the inspected surface, two-dimensional matrix W is 

created from the recorded data as the digital point cloud of the scanned surface. The 

data set is expressed for Equation 2.9: 

 

                                 Equation 2. 9 

 

where: i, j are row and column number, respectively and Lij is the signal value at (i, j) 

point of scanned area. 

In general, the hardware required to implement this measurement technique 

includes (MALCOMB, 2014): 

 

• The profilometer head (the scanner itself) which houses the laser and detector; 

• A mechanism that moves the object or camera/laser system through the field of 

view of the imaging system, with a controlling system; 

• A PC application to process the captured image and accurately translate pixel 

offsets to height differences. 

 

Although very different systems are possible to be projected using these basic 

elements, more general and versatile equipment have been created in the last years. For 

example, Giesko and al. (2007) developed a very representative surface profilometer X-

Y (with a vertical range of 10 mm, scanning area of 100 x 100 mm², resolution of 1 μm 

and scanning step of 0.6 μm / 5 μm) and a rotational profilometer R for small objects 

(with radial measurement range of 80 mm, vertical radial measurement range of 100 

mm, resolution of 0.5 μm, vertical scanning step of  0.6 μm / 0.5 μm and angular 

scanning step of 0.003° / 0.027°), equipped with high accuracy laser heads, as can be 

seen in Figure 2.11. The adjustment of the working distance of the laser head is possible 

by using a manually operated micrometer head. In the rotary profilometer R, the rotary 

stage was applied for angle positioning the object towards the laser head. 
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Figure 2. 11: Example of developed profilometry systems: a) profilometer X-Y; b) 

profilometer R; Adapted from (GIESKO, 2007). 

 

The laser is driven across the entire countersink along a specific axis at a 

specified feed rate using the CNC. The position of the edge on another perpendicular 

axis is sampled at a specified frequency using a standalone laser controller. For each 

sample, the position is inferred from the feed rate and sampling frequency. Usually, to 

scan the straight direction of a laser beam and focus it to some plane or along a line for 

1D scanning, rotating or galvanometer mirrors in conjunction with scanning lens are 

applied. The lens is responsible for focus the beam and modifies its propagation 

direction. For this application, the lens cannot have a simple spherical geometry, since 

its focus positions cannot be in the plane of interest. To solve this problem, new kinds 

of lenses or, in fact, multi-elements lens systems, have been developed to overcome this 

limitation, each one of them with specific characteristics, as can be seen in Table 2.8. 

Therefore, the choice of the lens is an essential factor in the scanning system project 

(RP PHOTONICS, 2019).  
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Table 2. 8: Scanning lenses types. Figures adapted from (ENVISION, 2015). 

Type Characteristics Illustration 

Simple 

achromatic 

lenses 

Focus position lie on an 

approximately spherical surface, 

out of the plane of interest. They 

are not suitable for scanning 

processes. 
 

Flat-field 

scanning 

lenses 

Provide an approximately 

constant spot size throughout the 

target plane. 
 

F-theta 

scanning 

lenses 

The spot position depends 

linearly (with only weak 

aberrations) on the beam angle θ, 

what reduces the image 

distortion. 
 

Telecentric 

lenses 

Obtains normal incidence for all 

points of the target plane, 

obtaining a quite precisely 

constant spot size or the full area, 

avoiding beam ovality. Scan area 

is limited by the size of the lens. 

 

 

 

The laser profilometry hardware is composed of a system that integrates the 

profilometry scanner, a moving mechanism with its controlling equipment, and a PC 

application for the data processing. Besides that, the choose of the scanner lenses type is 

a fundamental parameter that affects directly the scanning capability. 

 

1.2.2 Structure light scanners 

Some of the most widely used active methods in the field of vision based non-

contact 3D measurements are based on structured light scanning (SLS). The functioning 

of structured light scanners is based in a projector shining structured patterns onto the 

object whose geometry distorts the structured patterns and a camera captures the 

distorted structured images from another perspective. The correspondence is established 

by analyzing the distortion of captured structured images with known features (e.g., 

phase interpolation) projected by the projector (ZHANG, 2018). Once the system is 
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calibrated and the correspondence is known, (x, y, z) coordinates can be reconstructed, 

using a method similar to the method used by stereo vision techniques, but replacing 

one of the two cameras by an active light projector, as can be seen schematically in 

Figure 2.12. A few alternative definitions of SLS are also found in literature (GENG, 

2011). Inspections through the SLS will be used as reference inspection to the 

developments performed in this work. 

 

a)    b) 

Figure 2. 12: a) Epipolar geometry for a standard stereo vision system; b) Schematic 

diagram of a typical structured light system. Adapted from (ZHANG, 2018). 

 

The technique started to be used in early 1980’s, whose invention can be 

attributed to Posdamer and Altschuler (ALTSCHULER, 1982). Some milestones related 

to the SLS development after this first consolidated system are: the invention of the 

Photon Mixer Device (PMD) for Time of Flight (TOF) imaging (SCHWARTE, 1997), 

the introduction of the Microsoft Kinect 1 single-shot structured light system, and, more 

recently, highly accuracy systems from manufacturers like GOM, Cognex, Hexagon 

Metrology, and Aicon 3D Systems (WILM, 2015). Figure 2.13 shows typical 

specifications of a modern high definition scanner and its specifications.  
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Specifications smartSCAN3D C5 

Camera type 2 CCD colour cameras 

Camera resolution 5 MPixel, each 

FOV 30 to 1500 mm 

Operating distance 250 to 1500 mm 

Triangulation angle (30°/20°/10°) within one 

Acquisition time ca. 1 sec (fast mode) 

Sensor weight ca. 4 kg 

X/Y resolution 10 to 500 μm 

Z resolution 1 to 50 μm 

 

Figure 2. 13: Typical specifications of the high definition smartSCAN3D C5 scanner of 

Breuckmann GmbH, now Hexagon Metrology (table); the smartSCAN system of 

Breuckmann GmbH (image). Adapted from (BREUCKMANN, 2014). 

 

In contrast to other active methods such as laser line scanning, structured light 

coding schemes have been developed which encode a scene with multiple thousands of 

scene points with as little as one static pattern. As an example, with binary coding the 

number of patterns and camera frames, N, is in the order of 10. In laser line scanning 2N 

camera frames, which can be encoded, are needed for the same coverage (WILM, 

2015). This also means that the scan time usually is usually longer with a laser scanner 

than with a SLS (TÖRNBLOM, 2010).  

With this technique, a dense reconstruction of the surface can be obtained with as 

little as three projected patterns and camera images. This is, in contrast to laser line 

scanning, where each camera image yields only reconstruction of a single line of points 

on the object surface. However, as the triangulation principle is the same, a SLS scanner 

can be considered a parallelized laser scanner (WILM, 2015). 

Due to the flexibility and versatility of structured light methods, 3D shape 

measurement using structured light methods has been a vibrant field with increased 

interest in development and employment. High-speed and high-accuracy 3D shape 

measurement techniques become more and more important with new applications found 
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regularly (ZHANG, 2018). The components comprising an SLS scanner are available as 

commodity hardware, therefore highly accurate systems can be constructed at 

comparatively low prices. In recent years, the general availability of highly accurate 

systems (down to single digit micron) has grown, from manufacturers like GOM, 

Cognex, Hexagon Metrology, and Aicon 3D Systems (WILM, 2015). 

According to Reiss (REISS, 2007), the structured light systems are based on three 

main problems to be mastered: Pattern codification, system calibration and capture unit. 

These three problems will be explained and explored in the next subsection. 

Pattern codification concerns to the correspondence ways between the structured 

light patterns projected over the image and its posterior decoding. In other words, to 

make possible to determine each structured light point between its neighbors and assign 

to them the geometrical parameters that would allow the point 3D reconstruction 

(REISS, 2007). This is a solution for one of the main problems experimented by 3D 

scanning: make a sparse reconstruction since density is directly related to the texture of 

the object. This complicates the process of finding correspondences in the presence of 

less texture surfaces. The projected pattern creates the illusion of texture onto an object, 

increasing the correspondences (SALVI, 2010). 

The patterns can be coded spatially (in a single frame), temporally (in multiple 

frames), or in a hybrid combination of the two types of coding. Spatial coding consists 

of the projection of a single pattern for the acquisition of the object's structure, allowing 

its application in dynamic scenes. On the other hand, temporal coding consists of the 

projection of a sequence of patterns and benefits from redundancy, reducing 

reconstruction artifacts of the object's structure (FERNANDES, 2012). 

Salvi et al. (2010) performed an exhaustively analysis of the different coding 

strategies used in active structured light, focusing on recent improvements. They 

classified the techniques considering firstly the discrete or continuous nature of the 

pattern, rather than the codification process. A posterior sub-classification is done 

regarding spatial, time and frequency multiplexing, and indicating some intrinsic 

attributes of each one. These attributes are specified in Table 2.9. 
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Table 2. 9: Coding attributes (SALVI, 2010). 

Attribute Description 

Number of projected 

patterns (shots) 

Whether the codifications can capture moving objects or not 

(1. 2 or >2). 

Number of cameras 

The method uses stereovision (two or more cameras) 

coupled to a non-calibrated pattern, or a unique camera 

coupled to a calibrated projector. 

Axis codification Number of coded axes (1 or 2). 

Pixel depth 
Color and luminance level of the projected pattern (B, G and 

C stands for binary, grayscale and color, respectively). 

Sub-pixel accuracy 
Presence of sub-pixel precision for the features, thus 

providing better reconstruction results (yes or no). 

Color 
Determines whether the technique can cope with colored 

objects (yes or no). 

 

 

The sub-classification can be found in Tables 2.10 and 2.11. All the references 

presented in these tables can be found in the work performed for (SALVI, 2010).  
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Table 2. 10: Continuous coding strategies – Part 1. Adapted from (SALVI, 2010). 

Techniques Author Year Shots Cameras Axis 
Pixel 

depth 

Subpixel 

acc. 
Color 

Single phase 

shifting (SPS) 

 

 

Srinivasan 1985 >2 1 1 G Y Y 

Ono 2004 >2 1 1 G Y Y 

Wust 1991 1 1 1 C Y N 

Guan 2004 1 1 1 G Y Y 

Multiple phase 

shifting (MPS) 

 

 

Gushov 1991 >2 1 1 G Y Y 

Pribanic 2009 >2 1 1 G Y Y 

Frequency 

multiplexing 

single coding 

frequency 

 

 

Takeda 1983 1 1 1 G Y Y 

Cobelli 2009 1 1 2 G Y Y 

Su 1990 2 1 2 G Y Y 

Hu 2009 2 2 2 C Y Y 

Chen 2007 1 1 2 C Y N 

Yue 2006 1 1 2 G Y Y 

Chen 2005 2 1 2 G Y Y 

Berryman 2008 1 1 2 G Y Y 

Gdeisat 2006 1 1 2 G Y Y 

Zhang 2008 1 1 1 G Y Y 

Lin 1995 2 1 1 G Y Y 

Huang 2005 >2 1 1 G Y Y 

Jia 2007 2 1 1 G Y Y 

Wu 2006 1 1 1 G Y Y 

Spatial 

multiplexing 

grading 

 

 

Carrihill 1985 1 1 1 G Y N 

Tajima 1990 1 1 1 C Y N 
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Table 2. 11: Discrete coding strategies – Part 2. Adapted from (SALVI, 2010). 

Technique Author Year Shots Camera Axis 
Pixel 

depth 

Subpixel 

acc. 
Color 

De Brujin 

 

Boyer 1987 1 1 1 C Y N 

Salvi 1998 1 1 1 C Y Y 

Monks 1992 1 1 1 C Y N 

Pages 2004 1 1 1 C Y N 

Non formal 

Forster 2007 1 1 1 C Y N 

Fechteler 2008 1 1 1 C Y N 

Tehrani 2008 1 1 1 C N Y 

Maruyama 1993 1 1 2 B N Y 

Kawasy 2008 1 2 2 C N Y 

Ito 1995 1 1 2 G N Y 

Koninckx 2006 1 1 2 C Y Y 

M-Array 

 

Griffin 1992 1 1 2 C Y Y 

Morano 1998 1 1 2 C Y Y 

Pages 2006 1 1 2 C Y N 

Albitar 2007 1 1 2 B N Y 

Binary 

codes 

 

Posdamer 1982 >2 1 1 B N Y 

Ishii 2007 >2 1 1 B N N 

Sun 2006 >2 2 1 B Y Y 

N-ary codes Caspi 1998 >2 1 1 C N N 

Shifting 

codes 

Zhang 2002 >2 1 1 C Y N 

Sansoni 2000 >2 1 1 G Y Y 

Guhring 2001 >2 1 1 G Y Y 

 

 

Therefore, it is observed that there is a large set of coding strategies in the 

commercial and academic sectors, with multiple possibilities of attibutes to be applied 

in different cenarios, depending on the characteristics of each utilization.  For example, 

the chose of a specific coding pattern can make possible the reconstruction of dynamic 

surfaces, as in some scanners models of COGNEX company. Some strategies can also 

be highly efficient for measuring 3D objects with smooth surfaces, but not for ones with 

a great number of discontinuities, that is the case of MARUYAMA and WUST 

technique (SALVI, 2010).  In conclusion, the choice of the coding strategy is a crucial 

point of the reconstruction process. 
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After the determination of the coding pattern to be applied in the reconstruction 

technique, the next fundamental topic in the SLS techniques is the calibration process. 

In basic terms, the calibration seeks to determine the parameters of the indexed 

point projection geometry (REISS, 2007). The key to accurate reconstruction of the 3-D 

shape is the proper calibration of each element used in the structured light system. 

Several approaches to calibrating structured light systems can be found in the literature, 

such as techniques based on neural networks, bundle adjustment, or absolute phase, in 

which the calibration process depends on the available system parameter information 

and the system setup. It usually involves complicated and time-consuming procedures 

(ZHANG, HUANG, 2006). 

To guarantee a maximum reconstruction accuracy that can be obtained with SLS 

systems is imperative to perform a precise and accurate calibration of three 

interconnected elements: the camera parameters, the projector parameters (that are 

called intrinsic parameters), and the parameters related to the spatial interrelationship 

between them both (that are called extrinsic parameters). Formally, both devices are 

often modelled by what are called linear projective pin-hole models, augmented with 

what is called non-linear lens distortion model. More information about these models 

can be found in the very representative investigation of, since their mathematical 

complexity escapes of the scope of this work (WILM, 2015). 

This estimation of these parameters is made using coordinates in the scene space 

and its related coordinates in the image plane. To perform this, a test object calibration 

target is needed, with M number of known points target marks (LEGARDA-SAENZ; 

BOTHE et al., 2004). Through the analysis of several views of this object, the 

estimation is carried out, positioned within the volume that is being imaged by the 

system. Therefore, the estimated parameters are expected to hold accurate only within 

the volume occupied by the test object. 

A common target object is a plane with the test marks that are provided in an 

organized manner by the system manufacturer. This plane is positioned in several places 

of the 3-D volume, and for each one the calibration data are taken. The calibration data 

basically consists of an image of the test markers, and the absolute phase measurement 

of the target object. In the calibration process, first, the position of each target mark is 

estimated from the image taken. Once these positions are known, it is necessary to 

estimate the data used in the projector calibration. These data are estimated using the 

absolute phase measurement of the object, assigning each phase value to a unique 
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projector position.  An example of measurement set can be seen in Figure 2.14 

(LEGARDA-SAENZ, BOTHE et al., 2004). 

 

 

Figure 2. 14: Measurement set used in the calibration: a) simple image, and 

absolute phase measurements in the b) horizontal and c) vertical direction. Adapted 

from (LEGARDA-SAENZ, BOTHE et al., 2004). 

 

Once the input data are estimated, it is necessary to estimate the calibration 

parameters themselves. This can be made by minimizing the total square error between 

the measurements and the estimations of the coordinate’s transformation (LEGARDA-

SAENZ, BOTHE et al., 2004).  

After intrinsic parameters of the camera and the projector are calibrated, the next 

task is to calibrate the extrinsic parameters of the system. They are, for example, the 

image system orientation and the perspective center positioning (VILELA, 2008). These 

parameters determine the transformation that relates the position and orientation of the 

camera coordinate system to the position and orientation of the projector coordinate 

system and are intrinsically related to the relative position and orientation between 

camera and projector. Therefore, if the camera/projector positioning is altered after the 

calibration, it is necessary to calibrate the extrinsic parameters again before a new 

acquisition (FERNANDES, 2012). This estimation is accurate only inside the volume 

determined by the test object. With the 3D scanner set and calibrated, it is possible to 

proceed to the point acquisition using capture units.  

The capture unit refers to the structured light projection and imaging physical 

tools. The structured light systems are capable of capture only one surface for each 

point of view, turning necessary to combine several points of view to create a complete 

3D model of an object, if it is needed. Therefore, as presented before, in general the 

systems consist of a camera (or a set of cameras), a projector and, in some cases, a 

a) b) c) 
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support mechanism to move the object (FERNANDES, 2012). However, if the 

application of interest only requires the reconstruction of a specific surface of the 

scanned object, its movement is not necessary. In the Figure 2.15 is presented a 

complete SLS system to fully reconstruct small objects using a rotative platform.  

The montage of the SLS capture unit also includes a software development 

component, creating a set of algorithms for the control and calibration of the system. 

Some common functions implemented in the control software are tridimensional point 

acquisition, background estimation, background reset, camera intrinsic calibration, 

projector intrinsic calibration, and system extrinsic calibration. In order to improve the 

accuracy of SLS inspection, it is also possible to perform a procedure called 

photogrammetry. This process consists of acquiring reference images of the sample 

surface to be inspected with randomly placed reference points on the surface. These 

points will be converted into a cloud of reference points that can be used for SLS 

inspection.  (FERNANDES, 2012). 

 

 

Figure 2. 15: Example structured light scanner. Adapted from (FERNANDES, 2012). 

 

The capture of points is done by projecting and receiving a sequence of structured 

light patterns using a certain coded pattern and provides clouds of points to the output. 

The sequence of images captured by the camera is decoded to resolve matches between 

each pixel in the camera and each line or column of the projector. With the intrinsic and 

extrinsic parameters of the projector and camera, as well as the matches in hands, the 

3D points are acquired by optical triangulation (FERNANDES, 2012). 
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Unlike laser systems whose light has some level of radiation, the SLS systems 

have no need for special safety precautions since it generally uses a white light source. 

In addition, some LCD systems have accuracies equivalent to those of the laser system. 

Another advantage of this system is the possibility of capturing all the projected targets 

and the image of the entire object at one time, turning unnecessary to keep the object 

static for a long period of time while the scanner swipes along the desired area of 

scanning. Although, in SLS it would be still necessary to take multiple positions to fully 

cover an object when the desired area is larger than the sensor coverage field 

(KOKUBUM, TOMMASELLI et al., 2005). Another advantage in comparison to their 

counterpart laser-based systems are more attractive costs. Although, the laser devices 

are, in general, more easily miniaturized, offer a higher power illumination, and be 

equipped with optical filters to improve detection and image extraction. After the point 

clouds acquisition, the data must be processed and applied as an input for the surface 

reconstruction algorithms (FERNANDES, 2012). 

The reconstruction of surfaces from the cloud of points obtained by a 3D scanner 

is complex issue. Although there are different methods to originate polygonal models 

from the point sets, there is a set of common steps to the various approaches, consisting 

of (FERNANDES, 2012): 

 

• Alignment of the point clouds according to a common coordinate system: When 

the position and orientation of the object in front of the scanner are controlled, it 

is possible to determine a transformation that relates the different positions and 

orientations of the object. Hence, the point clouds will be related by the same 

transformation, which can be applied to relate the clouds. When this 

transformation is not determined, it is needed to use algorithms that estimate a 

transformation that align the different point clouds.  

• Integration of point clouds into a single global cloud: Since each cloud of points 

contains a small area of the surface of the object, in order to produce a 

reconstruction of its surface, it is necessary to integrate the points of the 

different clouds. When the point clouds are related in pairs, a reference cloud is 

fixed. The point clouds are aligned with the reference, which takes its points at 

the end of each correlation. 

• Construction of the surfaces polygonal geometric model: The reconstruction of a 

polygonal model that represents a surface is an explored subject. For that, there 
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is no standard method. The reconstruction can be done from sets of disarranged 

points, or from structured data (such as an image or a structured grid).  

 

The main elements necessary to construct a SLS system explored in the last 

sections have multiple possibilities of customization and integration to best adapt the 

potentials of this technology. As observed, the reconstruction algorithms are based in a 

very basic set of steps but can be further improved and receive very different 

mathematical approaches to reduce errors associated to each scanning challenges.  

  

1.3    Defect recognition and data processing 

In the quality assurance field, inspection systems have been developed and are 

being more and more used in the manufacturing process for the defects detection. 

Several inspection techniques including optical, magnetic and acoustic non-destructive 

tests have been increasingly applied to this objective, using different physical principles 

and approaches to identify the presence of defects and to reconstruct then through 

computational routes. However, generate data carrying information about the presence 

or absence of defects in materials is not the end of the process. The recognition and 

classification of these defects are necessary because multiple kinds of sources can cause 

them with different features impacting the products quality. Indeed, without knowing 

the features of the defects, it is very difficult to even find their sources in a complex 

manufacturing process (KANG, LEE et al., 2009). 

In this sense, automatic defect classification (ADC) is a remaining problem in 

manufacturing process due to limits of quantification of defect features conventionally 

relying on human judgment based on its own experience (KANG, LEE et al., 2009). 

Defect classification system based on machine learning techniques are very common, 

since they are trained on defects to learn to distinguish defect types. After learning, it 

can then be used to automatically classify new defects into the corresponding type of 

defect folders (CHO, LEE, 2013). 

In this chapter, the most representative methods for processing and classification 

of the data generated by the inspection of defects are explored. Firstly, a section for the 

processing of raw data is exposed, explaining common algorithms applied to inspection 

data as normalization, interpolation, between others. Then, in the following subsection, 
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the classification routes for the processed data are studied, showing different feature 

extraction methods and classification strategies often applied to defect recognition.   

 

1.3.1 Data processing 

In few words, data processing is the conversion of raw data to meaningful 

information through a wide range of manual or automated operations. Data is 

technically processed to produce results that lead to a solution of a problem or 

improvement of an existing situation. Similar to a production process, it follows a cycle 

where inputs (raw data) are fed to a process (computer systems, software, etc.) to 

produce output (value information and insights). This process is fundamental to 

guarantee that the classification strategies will generate reliable results based in the 

information carried by the data.  

In this section, relevant algorithms applied to the data processing for automatic 

defect recognition are explored, the normalization, the interpolation, the color mapping 

and the contouring. 

For locally limited defect recognition the practical use of color mapping requires 

suitable contouring methods. For example, in places with high gradient, the human eyes 

naturally follow the lines that form with the same color, separating similarly colored 

areas into distinct regions.  

When contouring data, the algorithms effectively construct the boundary between 

these regions. These boundaries correspond to contour lines (2D) or surfaces (3D) of 

constant scalar value. They are called isolines or isocontours (PASCUCCI, 2019). 

Most algorithms for computing contours are known as marching methods. These 

methods work by inspecting each cell independently of any others (it marches through 

the cells) and applying the intermediate value theorem on the edges of each cell, by 

looking at the values at the nodes. 

A very common 2D contouring algorithm is called "marching squares". Given a 

two-dimensional data set, each vertex will have a certain weight “W”. The method 

consists of drawing lines connecting the edges of the squares of that data set, using a 

reference value “N”, also known as "iso-value". 

The lines are drawn as shown in Figure 2.16 (SCHROEDER; MARTIN; 

LORENSEN, 2006), called the "Lookup Table", which shows all possible ways to 

represent the lines that will be part of the contour. Black dots represent larger values 

and white dots represent smaller values than N. This value is usually based on the data 
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statistical distribution. The Figure 2.17 shows an example of a contour performed by 

this algorithm. 

 

 

Figure 2. 16: Lookup table used in the Marching Squares algorithm (SCHROEDER, 

MARTIN et al., 2006). 

 

 

Figure 2. 17: Bidimensional values grid with N = 0.48 (SCHROEDER, MARTIN et al., 

2006). 

 

1.3.2 Defect recognition 

This section will explore the classification methods of data after they pass through 

the processing stages shown in section 2.3.1.  

All classification methods are divided in two parts. The first is called training, 

where a database of inspection results with already detected defects is utilized to 

determine specific parameters of a specific algorithm of classification. To make this 

possible, is necessary to reduce the information carried by each inspection result in a set 
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of features that can be interpreted by the classifier. The process of choose and 

determinate the features of each result is called feature extraction, which is crucial to the 

classification reliability.  After the algorithm parameterization, that now receive the 

name “trained classifier”, it become capable to be determined if a new inspection result 

has or has not a defect within. Some of these classifiers can also measure properties of 

the defect, what can be useful to analyze its severity. The Figure 2.18 (YIN, TIAN et 

al., 2008) resumes this classification route, using as an example inspection technique 

that generates image data. 

 

 

Figure 2. 18: Conventional automatic defect recognition route highlighting the 

classification stages. Adapted from (YIN, TIAN et al., 2008). 

 

As exposed before, the feature extraction is a critical process to the whole defect 

recognition since, without it, the classifier will not be able to recognize from poorly 

selected features (KUMAR, BHATIA, 2014). Feature is synonymous of input attribute 

or variable, so, to find a satisfactory data representation is very domain specific and 

related to the available measurements of the case (GUYON, ELISSEEFF, 2006). 

As stated by Lippman: “Features should contain information required to 

distinguish between classes, be insensitive to irrelevant variability in the input, and also 

be limited in number, to permit efficient computation of discriminant functions and to 

limit the amount of training data required”. It is fundamental to focus on the feature 

extraction stage as it has a high impact on the efficiency of the recognition system. 
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Feature extraction quality of a feature extraction method is the single most important 

factor in achieving high recognition performance (KUMAR, BHATIA, 2014). 

Although feature extraction main goal is to determine the most relevant and 

informative features, it can have other secondary objectives, including (GUYON, 

ELISSEEFF, 2006):  

 

• Reduce general data, to limit the required storage and increase algorithm 

speed;  

• Reduce feature set and save resources during utilization;  

• Accuracy performance improvement; 

• Improve data understanding and visualization; 

 

Feature extraction is an important step in the construction of any pattern 

classification and aims at the extraction of the relevant information that characterizes 

each class. In this process relevant features are extracted from objects to form feature 

vectors. These feature vectors are then used by classifiers to recognize the input unit 

with target output unit. The features can be classified in (KUMAR, BHATIA, 2014) 

(PERNKOPF, 2004):  

 

• Statistical Features: Derived from the statistical distribution of points; 

• Global Transformation and Series Expansion Features: Derived to a series 

expansion of a continuous signal data. Examples are Discrete Cosine Transforms 

(DCT) and other wavelets transforms. 

• Singular value decomposition (SVD) features: the first singular values directly 

derived from the range data of surface segments are used as features. 

• Geometrical and Topological Features: These features may represent global 

and local properties of characters and have high tolerances to distortions and 

style variations. These are the main features to be considered in image data. 

 

Human expertise is often required to convert “raw” data into a set of useful 

features, through the manual selection of the desired data to be used as features 

(KUMAR, BHATIA, 2014). This selection must, therefore, deeply consider the 

experimental methodology through which the data is generated. 
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In this subsection, strategies for automatic defect classification using NDT are 

explored, with examples of works that proposed recognition systems based on them. 

The common strategies are based on decision trees, neural networks, support vector 

machines, Bayesian networks and fuzzy logic.  

 

Decision trees: Decision trees are considered to be one of the traditional and simple 

methods for representing classifiers, once they have a similar architecture as human 

decision-making (SONG; KIM et al., 2018).  A decision tree is a classifier expressed as 

a recursive partition of the instance space, composed of several nodes.  

The algorithm begins with a ‘root’ node consisting of all the samples extracted 

feature vectors in the training dataset. After, they are recursively partitioned (or split) 

based on some splitting criterion into ‘purer’ subsets, also called branch nodes, till all 

the samples in the partition belong to the same class or a termination criterion is 

satisfied (SUMESH et al., 2018). This classification is based on a specific value of the 

descriptor of each node. The nodes which cannot be further split are called leaf nodes 

(SONG, KIM et al., 2018).  

In a decision tree, the final node, where the input data arrive after passing every 

node, is called the terminal node, and the data are ultimately classified using the value 

of the terminal node (SUMESH, NAIR et al., 2018). When applied to defect 

classification, each terminal node would hold a different defect type (CHO, LEE, 2013). 

The Figure 2.19 (BRID, 2019) illustrates a decision tree algorithm. 
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Figure 2. 19: Illustration of a decision tree algorithm. Adapted from (BRID, 2019). 

 

Neural Networks: A neural network is a set of connected input/output units in which 

each connection has a weight associated with it. The network needs long training time 

in general and requires several empirical parameters. Between these, one of the most 

important is the network topology, which determines how the network connects the 

predictors to the targets through the hidden layers (CHO, LEE, 2013). 

Between the different neural network methods, the multi-layer perceptron 

(MLP) shows several advantages. It is characterized by one or more hidden layers 

between the conventional input and output layers. This classification algorithm 

overcomes the limit of a single-layer perceptron, which enables only linear 

classification through a hidden layer, and allows more complex relationships at the 

reasonable cost of the training and scoring time, as can be seen in Figure 2.20 (SONG, 

KIM et al, 2018) (CHO, LEE, 2013). 
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Figure 2. 20: Multi-layer perceptron algorithm structure, where a) is the input layer; b) 

is the hidden layer and c) is the output layer. Adapted from (SONG, KIM et al., 2018). 

 

Support Vector Machine (SVM): SVM is a machine learning algorithm originally 

applied for binary classification problems and has risen as one of the most popular 

classifiers in various fields. The base of this method is the selection of a kernel function 

that maps the non-linear finite dimensional space including the input feature vectors in a 

much higher dimensional space. This is necessary because, in general, the dataset is 

linearly inseparable in its own dimension to be classified. Therefore, into a higher 

dimensional space, a linear classification is possible (SONG, KIM et al, 2018), as can 

be seen in Figure 2.21.  

 

a) b) c) 
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Figure 2. 21: Transformation of the input space in feature space through the application 

of the kernel function. Adapted from (WANG, GUO, 2014). 

 

Then, a hyperplane is parameterized and moved between both classes until leaves 

the maximum possible margin, as can be seen in Figure 2.22 (WANG, GUO, 2014). 

Thus, the principle of this algorithm is to determine a hyperplane through a set of 

training samples (AMID, AGHDAM et al., 2012). In other words, it predicts which of 

possible classes forms the output from a set of input data, making it a non-probabilistic 

binary linear classifier. Furthermore, the SVM is recognized as a robust classifier that 

maximizes the predictive accuracy while minimizing over-fitting (CHO, LEE, 2013). 

 

 

Figure 2. 22: Illustration of the optimal separating hyperplane of the "balls" and 

"triangles" classes. Adapted from (WANG, GUO, 2014). 
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Bayesian Networks: A Bayesian network is a statistical framework based on Bayes 

theorem (CHO, LEE, 2013). It is usually applied when is desired to achieve an 

improvement of the classification accuracy modeling statistical dependencies between 

attributes (PERNKOPF, 2004).  

As exposed by Pernkopf (2004), a Bayesian network is a directed acyclic graph G, 

which defines probabilistic relationships among a set of random variables U, where 

each element in U has specific values denoted by {x1. ..., xn, x}. The symbol n expresses 

the number of attributes of the classifier. Each node of the graph expresses a random 

variable, while the edges denote the dependencies between these variables. The network 

models the conditional independence relationships so that each node is independent of 

its non-descendants, given its parents. These conditional relationships minimize the 

number of parameters necessary to express the probability distribution, as can be seen in 

Figure 2.23. 

 

 

Figure 2. 23: Example of a Bayesian network. Adapted from (MIRESMAILLI, 

BADULESCU et al., 2007). 

 

Therefore, the Bayesian networks are used for building classifiers based in this 

framework. The most common is known as Naïve Bayes Network (NBN). It is the 

simplest Bayesian network in terms of structure and learning. The NBN graph is 

restricted to a tree where the root can be expressed as a class variable C and the edges 

lead from the root to the remaining attributes. Therefore, the class node is the parent of 
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all attribute nodes in NBN, as can be shown in Figure 2.24 (GOUMEIDANE, 

BOUZAIENI et al., 2015). 

 

 

Figure 2. 24: Example of a Naïve-Bayes network. Adapted from (GOUMEIDANE, 

BOUZAIENI et al., 2015). 

 

The NBN is known to be a robust method that shows good performance in terms 

of classification accuracy, despite its simplicity. This includes the cases in which the 

independence hypothesis is violated (GOUMEIDANE, BOUZAIENI et al., 2015). 

Goumeidane et al. (2015), in a very representative work, applied Bayesian 

Networks to discriminate weld defects in radiographic images. They performed test on a 

database of few hundred elements, with very promising results, since they were capable 

of outperform powerful SVM conventional classifiers. 

 

Fuzzy logic: Fuzzy logic (FL) is a simple and convenient approach for mapping a 

universe of discourse (another name for a input space) to an output space. In other 

words, mapping inputs to their corresponding outputs, such as in a general classification 

system where the inputs can be the feature vectors and outputs are the classification 

classes (AMZA, CICIC, 2015). 

Theoretically, FL refers to all the theories and technologies that employ fuzzy 

sets, which are defined as classes with unsharp boundaries (ZAHRAN, AL-NUAIMY, 

2004). The fuzzy set is the fundamental concept of FL. A fuzzy set is a set without a 

clearly defined boundary. In opposition to a classical set that wholly contains or wholly 

excludes any given element, a fuzzy set can contain elements partially, with a 

determined degree of membership. This degree of membership is also known as the 

membership function (MF), which defines how each point in the universe of discourse 

is mapped to a membership value (between 0 and 1) (AMZA, GHEORGHE et al., 

2008), as can be seen in Figure 2.25 (AMZA, CICIC, 2015). 
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Figure 2. 25: Representation of a fuzzy set over a universe of discourse. Adapted from 

(AMZA, GHEORGHE et al, 2008). 

 

Fuzzy logic can deal with situations in which is necessary to make a sharp 

distinction between the unsharp boundaries of applications. Therefore, it is largely 

applied for decision making and pattern recognition problems (ZAHRAN, AL-

NUAIMY, 2004). Other advantages of FL are (AMZA, CICIC, 2015): 

 

• high flexibility;  

• high tolerance of imprecise data;  

• can use experience of human experts as a scaffolding;  

• It is based on natural language, which has evolved over the centuries to be 

convenient, easy and efficient. Consequently, it is possible to assume that FL 

can be easier to use than other methods such as NNs. 

 

Despite the most diverse and sophisticated strategies for defect classification, the 

decisive point of the process occurs in the extraction of defect features. The feature 

extraction is a critical process to the whole defect recognition since, without it, the 

classifier will not be able to recognize from poorly selected features. It is fundamental 

to focus on the feature extraction stage as it has a high impact on the efficiency of the 

recognition system. In addition, as optimized as classification algorithms may be, they 

still require high computational power, which can be a problem for high-speed analysis. 
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The current work proposes to develop an algorithm that performs separately the 

extraction of defect characteristics with quality and reliability to be inserted in a 

secondary algorithm with the purpose of efficiently classifying the types of defects 

having good benefit in relation to the computational power required and the response 

speed of the analysis. 
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3. Bibliographic review 

 

3.1.    Electromagnetic techniques 

The increasingly importance of non-destructive evaluation endorses basic and 

advanced research developments, driving a technological progress in this area of 

knowledge. In the last decades, some significant progress has been achieved not only in 

the technological development of more efficient sensors and probes, but also on the 

testing of new inspection techniques based on different physical principles.  

Among these, a main technique has been placed in focus due to its technical 

relevance: EC test, where induced ECs are produced in the specimen under test and the 

resulting magnetic field is measured. Through the analysis of this measurement, the 

presence of defects and microstructural heterogeneities in the surface and subsurface of 

the specimen can be detected and reconstructed (GARCÍA, GIL et al., 2011). The 

relevance of EC test is, in part, related precisely to its high reliability and velocity in the 

detection of superficial and sub-superficial defects.  

The EC test also allows the application of secondary solid-state sensors to 

measure its resulting magnetic field. This type of probe hybridization can provide a set 

of advantages to the inspection process and to the results. Not only that, but some of 

these sensors can be used apart of the EC test, with other inspection designs and 

principles, providing different information about the integrity of the tested specimen. 

One of the most used solid-state magnetic field sensors, often applied along with EC 

test, is the Hall Effect based sensors, usually called “Hall sensors” (CORREA, 2017). 

An overview of relevant publications about systems those integrate both EC and Hall 

sensors for pipe inspections are exposed and analyzed, showing how they can be 

associated in multiple and efficient ways.  

Recently, the development of studies focusing on the optimization of EC test, 

mainly in the probes design, has been increasingly growing.  Both the industry and the 

academy are making great efforts to not only increase the EC test efficiency and 

sensibility in its current applications, but also diversify its potentials. Several 

optimization techniques have been applied to improve the EC test probes performance. 

In this line of works, the publication of Chen and Miya (1998) proposed a new approach 

for optimal design of EC test probes based on simplified detectability analysis method 

and a ring current model. The optimal probe designs were developed comparing the 
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detectability of excitation and pickup coils combinations through the simplified analysis 

method. The high performance of the new probe designs is assured by the work results. 

Similarly, Karthik et al. (2015), studied the optimized coil positioning for a defect 

reconstruction in steel plates through a genetic algorithm. A finite element technique 

was applied to simulate the inspection for a moving and fixed coil, and experimental 

tests were performed to validate the simulations. In Figure 3.1, the numerical model and 

the optimum shape of the reconstructed defect can be seen. 

 

 

Figure 3. 1: a) numerical model; b) optimum shape of the reconstructed defect. Adapted 

from (KARTHIK MATHIALAKAN et al., 2015). 

 

In other important direction, applications with high relative movement between 

the probe and the test specimen have been a challenge that required new probes and 

systems designs. Between relevant publications focused in this goal, it is important to 

quote that Rocha et al. (ROCHA, RAMOS et al., 2015) proposed an EC test probe 

design based on velocity-induced ECs to detect surface defects. Their results obtained 

through motion involved experimental tests confirmed that the proposed probe design 

was capable to detect the defects of interest. The design and optimization of the probe 

were performed using computational simulation. In the same goal, Pohl et al. (2004) 

have proposed the use of EC test for surface testing of railroad tracks at train speeds of 

70 km/h. The results obtained in the high velocity tests were very promising, as can be 

seen in Figure 3.2.  

a) b) 
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Figure 3. 2: Measured data of different scanning speeds where the vertical axis is 

amplitude and the horizontal axis is measured sampling. Adapted from (POHL, 

ERHARD et al., 2004). 

 

Also, an important field inside the EC test research that has been gaining high 

attention in the last years is the improvement of differential probes. The differential 

probes, in general, have superior sensitivity in comparison to absolute probes, what 

explains their popularity for many applications. For example, Chady et al. (1999) 

proposed a new EC differential sensor and a system for multi-frequency testing of 

conducting plates. The crack imaging was achieved using spectrograms obtained from 

an eddy-current probe multi-frequency response and application of a neural network. It 

is important to highlight from this work how the author solved the destructive 

interactions of frequencies. In order to solve the interference of the excitation signals, 

the sum of the harmonics was performed, obtaining an interference controlled by 

amplitude and phase in order to avoid the destructive interactions. Results of 

experiments showed very good sensitivity and spatial resolution. Some defects 

reconstructions can be seen in Figure 3.3. 
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Figure 3. 3: Spectrograms showing the reconstruction of associated defects. Adapted 

from (CHADY, ENOKIZONO et al., 1999). 

 

In other work, Benhadda et al. (2014) performed a study of the influence of 

conductive defect characteristics on EC differential probe signal. The studied 

geometrical and physical parameters are the defect depth, width and electric 

conductivity, through a finite element simulation technique. This study brings into 

evidence the necessity to take into account the defect electrical conductivity so as to 

ensure a full and accurate defect characterization. Similarly, Slobodnk (2017) analyzed 

the detection capability of a differential probe using pulsed EC test over an artificial 

subsurface defect in an electrically conductive steel plate. The investigated EC 

consisted of one excitation and two sensing coils with a ferrite magnetic circuit. The 

numerical solution was carried out in the COMSOL Multiphysics using Magnetic field 

and Electrical circuit modules. The results were verified by performing laboratory 

experiment.  

Several recent researches have been giving attention to the effects of the EC coils 

in the response signal and defects detectability. Pereira (2014) evaluated the best EC 

coil design for Ni superalloys inspection and determined that the sensitivity of a coil for 

inspection of a certain defect is directly linked to the shape of the EC field generated in 
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the part, being affected mainly by geometric factors, which can compete with itself. For 

example, compact fields are required for detection of small cracks, since they maximize 

the distortion caused by the discontinuity. On the other hand, satisfactory penetration 

requires the field to be large enough to permit enough penetration depth. Generally, it 

can be said that the depth reached by a simple coil is limited by a value equal to its 

diameter, while a satisfactory sensitivity requires that the diameter does not exceed the 

size of the defect to be detected.  

Yang et al. (2018) used the ANSYS Maxwell software to construct a finite 

element simulation in order to demonstrate the influence of the EC sensor measuring 

coil geometry on the magnetic induction intensity of the coil, and on the linearity and 

sensitivity of the sensor. Finite element modeling (FEM) is a powerful tool for 

improving sensor design, that have been more and more applied in the development of 

electromagnetic sensors since the 1980s (YANG, FENG et al., 2018), as will be further 

exposed in the next subsection. Some conclusions of Yang et al. (2018) shows that 

larger inner and outer diameter of the coil increases the sensor linearity and 

measurement range, but in the other hand decreases the magnetic induction strength of 

the coil, the magnetic induction intensity in the axial direction and the sensor sensitivity. 

Besides that, smaller coil thickness, increases the magnetic induction strength of the 

coil, magnetic induction intensity in the axial direction and sensor sensitivity, but in the 

other hand decreases sensor linearity and the measurement range. 

In other study also applying simulation, Zhou et al. (2015) modeled different 

probes such as cylindrical differential probe, single orthogonal rectangular probe and 

biorthogonal rectangular probe using COMSOL Multiphysics software, as can be seen 

in Figure 3.4. 

 

 

Figure 3. 4: a) Cylindrical differential probe; b) single orthogonal rectangular probe; c) 

biorthogonal rectangular probe. Adapted from (ZHOU, HOU et al., 2015). 

b) a) c) 
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 It is possible to say that the main conclusion of Zhou et al. (2015) shows 

cylindrical differential probe as having a good detection sensitivity, single orthogonal 

rectangular probe as having a high inhibition effect and a better detection sensitivity of 

depth variation than length and width variation and the biorthogonal rectangular probe 

as having high inhibition effect, better detection sensitivity of depth variation than 

length and width variation and more significant change of output signal and improved 

detection sensitivity. Therefore, the biorthogonal rectangular geometry showed the 

better overall performance for their application. That occurs because the results reveal 

that the orthogonal rectangular probe has a smaller magnetic line of force distribution 

range and a less magnetic energy loss compared with cylindrical difference probe. 

Compared with single orthogonal rectangular probe, biorthogonal rectangular probe has 

a more concentrated distribution of magnetic line of force, a larger change of magnetic 

energy, higher detection sensitivity and wider linearity range. Hence, the FE simulation 

results reveal that the biorthogonal rectangular probe is a new type of probe with higher 

testing performance. 

 In that sense, the different probe types and its geometries makes a legitim 

influence in the optimization of the results expected for a specific applications and 

environment. 

Electromagnetic sensors prove to be an efficient solution for the inspection of 

defects in materials, in view of the results presented of its applications and latest 

developments.  However, it is still necessary to develop EC sensors for a specific defect 

range and morphology and multiplexed scale in order not only to cover larger surfaces, 

but also to be able to have a sufficient data acquisition rate to meet the industrial 

conditions. In addition, this data must be processed automatically, enabling not only the 

development of an in-line inspection methodology, but also being able to use it on-line. 

In the following chapters this work demonstrates the work done to overcome these 

needs using separately EC sensors and hall effect sensors, generating data to be 

processed in the algorithm also developed in this work. 

 

3.2.    Optical 3D techniques 

For pipeline scanning processes, the tubular geometry of the object of interest and 

the access to the desired surfaces are the main challenges. Some of the milestones of the 

laser profilometry application for pipelines inspection are listed below. 
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Zhuang et al (1998) developed a simple pipe inspection system using a CCD 

camera and circular laser projector. The imaging sensor captures the periphery of the 

whole circle and finds the defect by processing the shape. They also applied an artificial 

neural network to classify the defect. Ames and LaMorte (2012) developed an 

automated laser scanning tool for pipeline corrosion to measure the extent of corrosion 

and provide an accurate contour map of the external corrosion of the pipe. The software 

for the automated laser scanning tool distinguishes between normal pipe surface 

features, such as seam and girth welds, and determines the depth and severity of the 

corrosion. Summan et al (2017) developed a probe system consisting of a compact laser 

profiler, fisheye lens camera and inertial measurement unit. Using bespoke hardware 

and an image feature-based Structure from Motion algorithm, the system could generate 

a photorealistic, geometrically accurate 3D surface model of the pipe. The probe has 

250 mm in length with a diameter of 45 mm and was designed to operate in pipes with 

diameter of 2 to 6 inches.  

In general, surface inspections of tubular laser products have been developed over 

the years. However, there are still certain limitations regarding resolution and detection 

due to the surface finish of the inspected materials, such as problems due to reflection. 

In addition, the large volume of data generated by inspections is a challenge for the 

analysis and identification of defects during the production process.  

The interior visual inspection of pipework is a critical inspection activity required 

to ensure the continued safe, reliable operation of the operation and thus avoid costly 

outages. Typically, for visual inspection systems, the video output from a manually 

deployed probe is viewed by an operator with the task of identifying and estimating the 

location of surface defects such as cracks, corrosion and pitting. However, it is very 

difficult to estimate the nature and spatial extent of defects from the often disorientating 

small field of view video of a relatively large structure. For that reason, more and more 

specific research in the development of solutions for these challenges are been made in 

the last decades. 

Kuntze and Haffner (1998) developed of one of the first commercial multi-

sensory pipe inspection systems that use the structured light as the lighting component. 

The KARO system consists of a mobile robot and surveillance station that integrates 

visual, ultrasonic and microwave back-scattering sensoring subsystems. Pikas (2007) 

made an overview of how 3D structured light technology works (process time, error, 

analysis, impact on corrosion analysis) and how it is now being used as a new method 
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for gathering pipeline feature or corrosion defect measurements. Thielemann et al 

(2009) used structured light technology for 3D data acquisition based on gray codes and 

phase shifting to verify other sensing techniques, such as ultrasound, that are used for 

pipe inspection. Ng (2013) developed a 3D videoprobe measurement system based on 

structured light phase shifting coding to be used as a metrological tool for welding 

inspection, generating full 3D maps or point clouds of the inspected weld surface. 

Buranský and Eva compared between three methods (CenterMax CMM, ATOS 

TripleScan II SLS and Metrotom 1500 computerized tomography) for data acquisition 

to the output characteristics of steel drawing tubes. Outer and internal diameters, 

eccentricity and ovality were measured. They conclude that GOM TripleScan represents 

one of the most advanced SLS equipment in the current market.   

Despite the various researches carried out and various products developed using 

optical techniques to detect cracks and corrosion, for example, on surfaces, it still takes 

time to process the data. Therefore, there is not yet a product on the market that inspects 

the surface, processes the data and has the result automatically, in-line and in realtime. 

 

3.3.    Defect recognition and data processing 

Inspection systems have been developed and are being more and more used in the 

manufacturing process for the detection of defects. However, generate data carrying 

information about the presence or not of defects in materials is not the end of the 

process. The recognition and classification of these defects are necessary because of 

multiple kinds of sources can cause them with different features impacting in the 

products quality. Automatic defect classification is a remaining problem in 

manufacturing process due to limits of quantification of defect features conventionally 

relying on human judgment based on its own experience (KANG, LEE et al. 2009). 

Defect classification system based on machine learning techniques are very common, 

since they are trained on defects to learn to distinguish defect types. After learning, it 

can then be used to automatically classify new defects into the corresponding type of 

defect folders (CHO, LEE, 2013).  

D’Angelo et al. (2015) utilized a shape geometric descriptor (SGD) method to 

measure a set of geometric features from the image generated by the impedance plane of 

EC. The features would after being used to train a defect classifier. Between the 

extracted geometric features, the selected features to compose the feature vector are: 
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Length (L), width (W) and orientation angle (α) of the shape defined by the inertia axis 

in the impedance plane, as can be seen in Figure 3.5. 

 

 

Figure 3. 5: Geometric features selected by D’Angelo et al. Adapted from (D'ANGELO, 

2015). 

 

In a similar work, Yin et al. (2019) proposed a clustering-based method in order to 

extract geometric features as length, width and inclination angle, taking advantage of 

the impedance data directly without using image recognition technique. The 

fundamental idea is to exploit clustering algorithms to find some centers of the data, as 

the K-means algorithm. They showed that considering a typical Lissajous curve (LC), 

after applying K-means clustering algorithm, three centers can be found, and the data 

are grouped into three clusters accordingly 

Therefore, the length (d), width (w) and inclination angle (α) of each ‘petal’ of the 

impedance plane can be defined as shown in Figure 3.6 (YIN, YE et al., 2019), and they 

are easy to compute. Additionally, symmetric indicator features   ,   , and    can 

also be calculated. 

 

 



61 

 

 

Figure 3. 6: Geometric features selected by Yin et al. Adapted from (YIN, YE et al., 

2019). 

 

In other similar work, Cho et al. (2013) use five shape-based features: defect size, 

lengthiness, compactness, SDF(x), and SDF(y), where SDF(x) and SDF(y) are the 

standard deviations of coefficients in Fourier Transform domain with respect to x- and 

y- axis, respectively. The defect size is defined as the pixel count of a defect, and 

lengthiness is defined as the ratio of short line segment to long one in a compact 

rectangular region-of-interest (crROI). This region is defined as the bounding rectangle 

that tightly encloses an object and is obtained by rotating the coordinates such that the 

major axis parallels to the line that connects a pair of points at a longest distance on the 

contour of the object, as can be seen in Figure 3.7. Another feature, compactness, is 

defined as the ratio of the area of defect to that of a bounding circle (BC) that encloses 

the object. 

 

 

 

Figure 3. 7: Defects with different geometries and their corresponding crROIs. Adapted 

from (CHO, LEE, 2013). 
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Furthermore, Yin et al. (2008) exposed many other geometrical features applied to 

defects classification of radiographic images. These features are useful to analyze the 

characteristics and severity of a defect once they are already detected.  Some important 

of these features are resumed in Table 3.1. 

 

Table 3. 1: Analyzed features by Yin et al. (2008). 

Feature Symbol Description 

Area A Actual number of pixels in the region. 

ConvexArea CA The number of pixels in convex image of defect area. 

Eccentricity ECC 
The eccentricity of the ellipse that has the same 

second-moments as the defect region. 

EquivDiameter ED 
The diameter of a circle with the same area as the 

defect region. 

MajorAxisLength MajorAL 

The length (in pixels) of the major axis of the ellipse 

that has the same normalized second central moments 

as the defect region. 

MinorAxisLength MinorAL 

The length (in pixels) of the minor axis of the ellipse 

that has the same normalized second central moments 

as the defect region. 

Orientation Angle 

The angle (in degrees) between the x-axis and the 

major axis of the ellipse that has the same second-

moments as the defect region. 

Perimeter P  The perimeter of the defect area. 

Solidity SO 
The proportion of the pixels in the convex hull that are 

also in the defect region. 

Anisometry Ani Ani = MajorAL/MinorAL 

  

 

However, the human expertise can be complemented by modeled feature 

extraction methods, that don’t require a manual selection of the optimal features of data.  

In some approaches, this modeled feature extraction is integrated with automatic 

feature construction methods. These techniques are capable to modify the original 
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vector with all the features to be shifted in a transformed vector that can facilitate the 

selection. Some of these methods are exposed by Guyon et al. (2006) as:  

 

• Standardization; 

• Normalization; 

• Signal enhancement;  

• Linear and non-linear space embedding methods; 

• Non-linear expansions; 

• Feature discretization.  

 

Some of the most applied feature construction methods are dimensionality 

reduction algorithms as principal components analysis (PCA) or linear discriminant 

analysis (LOA). This is due to the fact that, generally, higher feature dimensionality has 

a more positive effect on classification performance, whereas it also has some negative 

effects such as an increased probability of exposure to noise. To avoid this, these 

methods are used to reduce the number of features to be inputted in the classification 

algorithms, choosing to be maintained the most relevant ones (KANG, LEE et al., 

2009). 

After the optional feature construction, several feature selection models can be 

utilized to determine the most satisfactory set of features. These automatic methods are 

usually best fitted for a specific classification algorithm. Guyon et al. (2006) resumed 

the most frequently used feature selection methods in Table 3.2. 
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Table 3. 2: Most frequently used feature selection. Adapted from (GUYON, 

ELISSEEFF, 2006). 

Feature selection 
Matching 

classifier 
Comments 

Pearson Naïve-Bayes 

Feature ranking filter. Linear 

univariate. Makes 

independence assumptions 

between features. 

Relief 
Nearest 

Neighbors 

Feature ranking filter. Non-

linear multivariate. 

Gram-Schmidt 

Linear RLSQ 

(regularized 

least squared) 

Forward selection stopped at 

f features. Linear 

multivariate. 

RFE-SVM 

(Recursive Feature 

Elimination) 

SVM 

(Support 

Vector 

Machine) 

Backward elimination. 

Multivariate, linear or non-

linear. 

OBD/ARD 

(Optimum Brain 

Damage / Automatic 

Relevance 

Determination) 

Neural 

Networks 

Backward elimination. Non-

linear multivariate. 

RF (Random Forest) RF 

Ensemble of t tree 

classifiers, each preforming 

forward selection. Non-

linear multivariate. 

 

 

After this extraction, the set of feature vectors of each sample (that, in this case, 

are images), acts as input for classification strategies. These strategies will be 

responsible to detect and, sometimes, characterize images with defects within. The most 

relevant classification algorithms related to the scope of this work will be further 

explored in the next subsection, along with its characteristics. 
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The work of Song et al. (2018) applied MLP neural nets to classify defects 

generated by surface-mount technology (SMT), which is used to mount components 

onto a PCB. The defect types to be classified can be seen in Figure 3.8. They applied a 

feature extraction region-based method to raise the capability of modeling-base methods 

to analyze the details of the defects and reduce the inspection time. The inspection 

procedure for the solder joint defect type classification consists of an offline stage, 

which sets the optimal feature extraction region, and an online stage which classifies a 

defect type. 

 

 

Figure 3. 8: Component image according to defect type. Adapted from (SONG, KIM et 

al., 2018). 

 

Between the possible kernels to be applied in the classification process, Amid et 

al. (2012) exposed some of the most relevant ones, for a feature vector x, as can be seen 

in Table 3.3. 
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Table 3. 3: Some of the most relevant SVM kernels (AMID et al., 2012). 

Name Equation Description 

Linear kernel 

function 
 

Used for linearly separable 

feature space. It does not require 

any mapping over the dataset. 

Quadratic 

kernel function 
 

A simple and efficient kernel that 

became very popular in different 

applications. 

Polynomial 

kernel function  

R and d are kernel parameters. It 

is intuitive to expect that the 

relative weighting of the higher 

order polynomial increases by 

decreasing R. 

Radial Basis 

Function (RBF) 

or Gaussian 

kernel 

 

The parameter σ controls the 

flexibility of the kernel. 

Therefore, in other words, small σ 

increases the risk of overfitting 

while large σ transforms the 

kernel in a constant function 

which is not usable to learn any 

relevant classifiers. 

 

 

When more than two classes are needed, it is necessary to apply a multi-class 

method, since the basic algorithm of SVM is binary, i.e., only accepts two possible 

classes in the output. This is necessary, for example, when the objective of the method 

is to classify more than two kinds of defects, as presented by Wang et al. (2014) in the 

classification of six typed of weld defects using X-ray images. In their work, they 

exposed the main multi-class methods that are: One against rest (OAR), One against 

one (OAO), Direct multi-class support vector machine (DMSVM) and Binary-tree 

method of multi-class support vector machine.  

As presented above there is a recent trend in trying to recognize and classify 

automatically defects from the NDT data. However, there is not yet reported in the 
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literature a reliable and automatic way to recognize, characterize and classify defects 

from different NDT data, thus obtaining the same evaluation methodology. The present 

work has developed an algorithm in order to contribute to the development of such 

methodology. 

 

3.4.    Bibliographical review considerations 

As discussed, both electromagnetic and optical techniques can be used to detect 

surface defects, each of which has its advantages and disadvantages, such as 

electromagnetic techniques can detect defects that are covered by grease, which would 

not be possible by optical techniques. Meanwhile, optical techniques have a higher 

resolution for identification generating more reliable data for automatic classification of 

defects. Nevertheless, as seen in both techniques, it is necessary to post-process the data 

in order to obtain a reliable response from the pure identification or not of the defects. 

The hybridization of these techniques can be a powerful tool to industrially 

automate the inspection of surfaces, once their data can be processed in a reliable way 

and based on the same processing methodology. It is not covered in literature and there 

is no commercially available equipment or technique that can integrate and automate 

the in-line and on-line surface inspection process.   

Furthermore, feature extraction is a critical process to the whole defect 

recognition since, without it, the classifier will not be able to work properly from poorly 

selected features. It is fundamental to focus on the feature extraction stage as it has a 

high impact on the efficiency of the recognition system but as optimized as 

classification algorithms may be, they still require high computational power, which can 

be a problem for high-speed analysis. In this way one of the focuses of the present work 

in the literary contribution of the development of methodologies for defect classification 

was developed an algorithm capable of dealing with hybrid NDT data set aiming the 

automation recognition, characterization and classification of defects. 

The present work developed laboratory inspection methodologies based on EC, 

Hall sensors, structured light and laser line in order to detect surface defects under 

consideration of the boundary conditions of a pipe mill. To this end, it was also 

necessary to develop a unique form of data processing that can reliably deal with the 

different sources of data collected from the different techniques mentioned above, 

aiming not only in the detection of imperfections, but also in their dimensioning and 
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possible classification. Based on that, an algorithm was developed to evaluate 

simultaneously the raw data from these techniques in order to automatically recognize 

and classify eventual defects. 
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4. Materials and Methods 

 

4.1.  Samples 

Defects in the internal and external surfaces of seamless pipes arise from different 

causes during the production process of this product. Both external and internal defects 

can occur due to defects in the surface of the tools used in the production process, as 

well as due to the mechanical-metallurgical processes that occur during hot rolling. 

Defects in the external surface of the pipe can occur due to defects in the surface of the 

rollers of the rolling blocks, being formed negative impressions to the defects present in 

the surface of the rollers in the surface of the pipe, due to the tension applied between 

the rollers and the pipe during the hot process. Figure 4.1 a) shows the rolling blocks 

and Figure 4.1 b) shows the conical shape of the rollers that constitute these blocks.  

 

 

Figure 4. 1: a) Rolling blocks; b) the conical shape of the rollers. 

The same phenomena happen for defects in the inner surface of the pipes, but due 

to the internal finishing mandrel used during hot rolling. The finishing mandrel is about 

22 meters in length and is used inside the pipe, ensuring the final external diameter of 

the product. Figure 4.2 a) shows an example of finishing mandrel and Figure 4.2 b) 

shows a schematic drawing of the finishing mandrel. 
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Figure 4. 2: a) Finishing mandrel in the storage area; b) Geometric details of the 

mandrel. 

 

Examples of defects caused by surface defects in chucks or rollers are scratches, 

material pull-outs, and shallow defects of varying geometry. The metallurgical process 

involved during hot rolling can also generate some internal or external defects in the 

material. The formation of segregations in the material together with mechanical 

forming can create material segments that enter along the thickness of the pipe, thus 

generating bending and bag-type defects. These defects are difficult to detect because 

they are superficially similar to cracks, but subsurface have voluminous geometry. In 

Figure 4.3 a) is presented an example of defect coming from defects in the surface of 

tools and in Figure 4.3 b) is presented an example of defect coming from the 

mechanical-metallurgical processes of the production of seamless pipes. 
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Figure 4. 3: a) Defect from tool surface defects; b) rolling fold type defect. 

 

Both the end products and the tools are ferromagnetic materials and have a 

response signal in the magnetic component of the impedance plane. For the present 

study, pipe segments of AISI 4130 steel with 232 mm of external diameter containing 

machined surface defects manufactured by electro-erosion, grinding and gouging will 

be used. AISI/SAE 4130 grade is a ferromagnetic low-alloy steel containing chromium 

and molybdenum as strengthening agents. The steel has good strength and toughness, 

weldability and machinability. AISI/SAE 4130 grade is a versatile alloy with good 

atmospheric corrosion resistance and reasonable strength. which are representative of 

the reality of the materials used both in the inspection tools and in the manufactured 

products. Table 4.1 to 4.4 shows the samples used in this study. 
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Table 4. 1: Preliminary pipe (PP) – Sample with preliminary machined defects. 

Defect Picture 

P1 

 

P2 

 

P3 

 

P4 

 

P5 
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Table 4. 2: Pipe 1 with machined defects. 

Defect Pipe Picture 

Defect 1 

Pipe 1 

 

Defect 2 

Defect 3 

Defect 4 Pipe 1 

 

Defect 5 

Pipe 1 
 

Defect 6 

Defect 7 

Defect 8 

Defect 9 

Defect 10 

Pipe 1 

 

Defect 11 

Defect 12 

Defect 13 

Pipe 1 
 

Defect 14 

Defect 15 

Defect 16 

Defect 17 
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Table 4. 3: Pipe 2 with machined defects. 

Defect Pipe Picture 

Defect 18 

Pipe 2 

 

Defect 19 

Defect 20 Pipe 2 

 

Defect 21 

Pipe 2 

 

Defect 22 

Defect 23 

Defect 24 Pipe 2 
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Table 4. 4: Pipe 3 and 4 with machined defects. 

Defect Pipe Picture 

Defect 25 Pipe 3 

 

Defect 26 Pipe 3 

 

Defect 27 Pipe 3 

 

Defect 28 Pipe 4 

 

Defect 29 

Pipe 4 

 

Defect 30 

Defect 31 

Defect 32 Pipe 4 

 

Defect 33 Pipe 4 
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4.2.  Structured light system: Digital twin – reference and control data 

This work used Atos Triple Scan system, in Figure 4.4 a), by GOM company to 

reconstruct the surface of the samples with defects generating the digital twin, in Figure 

4.4 b), of the samples to control data, i.e., this data was the reference measures for the 

validation of the tests carried out with the electromagnetic and the optical system. Atos 

sensors are used in many industries for the inspection of static parts such as sheet 

metals, tools and dies, turbine blades, prototypes, injection-molded and pressure die-

cast parts. The functioning of structured light scanners is based in a projector shining 

structured patterns onto the object whose geometry distorts the structured patterns, as 

can be seen in Figure 4.4. Then, a camera captures the distorted structured images from 

another perspective. In such a system, the correspondence is established by analyzing 

the distortion of captured structured images with known features (e.g., phase line) 

projected by the projector, as described in chapter 2.2.2. 

 

 

Figure 4. 4: a) Atos structured light inspection system; b) Example of surface 

reconstructed by the Atos system. 

 

The diagram on Figure 4.5 shows the procedures to be followed with the light 

system structured to generate the samples digital twins to be used as reference 

throughout the project. 
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Figure 4. 5: Digital twin generation steps of the samples to be studied. 

 

4.3.  Electromagnetic inspection system 

 

Different EC probes were developed and studied based on both absolute and 

differential operating modes. These sensors should have enough resolution to detect the 

representative defects of the manufacturing process of seamless tubes detailed in item 

4.1. Computational simulations were performed to assist, optimize and validate the 

development of EC probes to be studied in this work. To this end, it was used the 

electromagnetism module of the COMSOL Multiphysics 5.4 finite element 

computational simulation software. In addition, hall effect sensors were instrumented on 

rods being used as a complementary measure to the EC, acting as a geometric sensor 

detecting dimensional variations in the studied samples, as well as enabled the detection 

of wide and shallow defects. Finally, it was built a functional prototype of this system 

that performed tests in the production environment, according to the scheme presented 

in Figure 4.6. where the sample to be inspected approaches the inspection system that 

adjusts itself to the cylindrical geometry of the sample, which in turn goes through the 

inspection system performing the measurements based on ECs and hall sensors. The 

raw data of the measurements will be sent directly to a computer where the developed 

algorithm perform the analysis for recognition of defects. 
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Figure 4. 6: Operational diagram of the electromagnetic inspection system. 

 

In general, it is intended to obtain a hybrid electromagnetic inspection system 

for automatic inspection of the surface quality of tubular and solid products or tools 

with nominally constant cross section geometry throughout each inspected segment, 

such as tubes, spindles, axles, profiles of various geometries, plates, among others. 

Therefore, the objectives of the proposed system are achieved by means of an 

inspection system, comprehending a plurality of geometrical surface profile sensors and 

EC probes distributed around the cross section of the segment of the part to be inspected 

and an electronic circuit for multiplexing electromagnetic signals, which processes the 

data captured by the plurality of sensors of the system. Each geometric surface profile 

sensor consists of an articulated rod with a contact end that runs through the surface of 

the part to be inspected.  

 

4.4.  Optical 3D surface inspection system 

One optical sensor based on laser line technology and triangulation principle 

was studied. The 3D laser scanner DSMAX from Cognex was used, it is one of the 

fastest and highest definition laser line 3D displacement sensor on the market for 

acquiring images and inspecting products in 3D having both high scan rates, up to 18 

kHz, at full measurement range and maximum resolution images, 2000 profile points. 
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The accurate, single shot high dynamic range (HDR) image was ideal for measure and 

inspect very small parts, such as electronic components or steel surfaces, which can 

contain highly reflective or dark features. Besides that, it includes telecentric optics for 

optimal image formation and shadow reduction, making possible to abrupt dimensional 

variation without distorting the results.  

To perform the tests with Cognex sensor, a prototype of an automated inspection 

table was built to be tested in the laboratory. This table consisted of two stepper motors, 

where the first have the function to rotate the pipe and the second have the function to 

perform the linear movement of the sensors. Figure 4.7 a) shows the DSMAX sensor an 

its work dimensions of circa 11 mm in high and 32 mm in width, the design of the table 

that was built for the external surface inspection of samples, in Figure 4.7 b) and c) in a 

configuration for internal surface inspection.  

 

 

Figure 4. 7: a) DSMAX sensor; b) automatic table for external inspection: c) automatic 

table for external inspection. 

 

The diagram on Figure 4.8. shows the main stages of tests that was performed 

for the sensor, in order to generate the data to be evaluated by the developed algorithm. 
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Figure 4. 8: Test steps for 3D optical techniques. 

 

4.5.  Development of the algorithm 

4.5.1.  Sample orientation 

A key factor for the success of the proposed work is the reliable acquisition and 

treatment of the data, representing spatially the surface of the inspected object. To this 

end, a coordinate system was defined to represent the three-dimensional samples and 

their respective representation in the plan of the response map of the results to be 

presented in subsequent chapters. In general, after the measurements by any of the 

technologies proposed in this work, the data are converted to a two-dimensional matrix. 
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To map the surface points of a pipe in three-dimensional space lR³, was 

considered that this surface consists of points belonging to a straight cylinder of radius 

R contained in the space between two planes. A longitudinal and transversal axis was 

defined as can be seen in Figure 4.9. These points can be expressed in cylindrical 

coordinates according to Equation 4.1 (where r is the radius of the cylinder, ϕ is the 

angle formed in the xy plane and z is the height of the point) and their illustration in 

Cartesian coordinates are shown in Figure 4.10: 

 

Figure 4. 9: Illustrative figure of the axle reference system for tubular samples. 

 

                        Equation 4. 1 

 

 

Figure 4. 10: Point relative to cylindrical coordinates in Cartesian coordinates. 

 

Figure 4.11 shows the coordinate constraints used when a section of a specific 

pipe is inspected between distances Z1 and Z2 of the longitudinal axis.  
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Figure 4. 11: Cylindrical coordinate restrictions for the inspection of a pipe segment 

with a specified length. 

 

To transform the cylindrical coordinate system into the Cartesian planar 

coordinate system of the results calculated by the computational algorithm, the surface 

of the cylinder was planned according to Equation 4.2 and its illustration in Figure 4.12. 

Still in Figure 4.12 it is observed in b) and c) the performance of geometric equivalence 

governed by Equation 4.2 where it is necessary only a linear scale change between the 

parameters Φ, z and the parameters x, y of results map coordinate system. To simplify 

the formulation, it is considered that the image coordinate system is normalized, without 

loss of generality. 

             Equation 4. 2 

 

Figure 4. 12: In a) the inspected segment between Z1 and Z2 is shown, b) the 

cylindrical surface planning process is illustrated and in c) the illustration of the 

equivalence of the results in the Cartesian xy plane is shown. 
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4.5.2.  Defect analysis and recognition algorithm 

 This work proposes to develop algorithms for the analysis of inspections 

performed by the reference technique, structured light, as well as for electromagnetic 

tests and laser scans. This algorithm was developed in python 3.7 programming 

language and operated by the ANACONDA 3 console. It is intended to use the libraries 

Plotly, Skimage, Mahotas and Shapely for plotting and data analysis, recognition of 

defects, features extraction and develop a defect classification proposal based on 

specific conditions to be further defined, in a similar way to the procedure used by the 

decision trees methodology. The Diagram on Figure 4.13 shows the data analysis flow: 
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Figure 4. 13: Diagram with developed algorithm process for defect analysis and recognitions.
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 The classification system is based on the features extracted from the defects, 

passing through three classification stages, based on their orientation (longitudinal, 

transversal, circular, oblique, irregular and complex), morphology (crack, scratch, dent 

and large scratches) and indication of depth. Examples of the types of defects and their 

orientation can be seen in Figure 4.14. 

 

 

Figure 4. 14: Different defect types and orientations. 

 

4.6.  Data acquisition rate 

 As discussed in the introduction to this work, the automation of an inspection 

methodology capable of meeting inspection speeds is of great relevance, since in 

addition to improving the reliability of visual inspections, it also improves the industrial 

competitiveness. The high speed of the production line and the embedded electronics 

for data processing are some examples of such restrictions. A key characteristic for the 

development of an in-line surface defect inspection system is the inspection speed.  

A high inspection speed is a boundary condition so that production cycle time is 

not affected. However, a high-speed inspection system can make it impossible to detect 

certain defects, given the probe's moment of inertia when rapidly passing over a defect, 

and can cause a decoupling of the probe/object interface and thus generate an unwanted 

lift-off signal. In addition, it requires electronics with a high data rate to achieve a 
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sufficiently high longitudinal resolution to meet the boundary conditions of the 

production line. The operating speed of an inspection system that meets the boundary 

conditions of the manufacturing environment can vary between 0.5 - 2 m/s depending 

on the product to be manufactured. To meet the longitudinal resolution requirements, 

the system must be able to perform at least one measurement every 0.5 mm during a 2 

m/s inspection. The developments made in this work took into consideration the need 

for electronics that have the capacity to perform inspections up to 2 m/s, being this a 

great challenge. 
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5.  Results and discussion 

 

5.1.  Structured light system – reference and control data 

The first step to perform the structured light measurements is to acquire images of 

the sample after reference points are distributed over its surface, this procedure is called 

photogrammetry, as described in chapter 2.2.2. This step provides a cloud of reference 

points that is used during the measurement with the structured light itself. Figure 5.1 a) 

shows a sample already prepared for the photogrammetry process, while in Figure 5.1 

b) shows the cloud of reference points obtained after this process. This process is not a 

necessary condition for performing the measurements with structured light, however it 

not only improves the quality of the test, but also reduces the time for performing the 

measurements. 

 

 

Figure 5. 1: a) Sample prepared to perform photogrammetry; b) cloud of reference 

points acquired after performing photogrammetry. 

 

After the reference points have been acquired, the measurements are performed 

with structured light, which projects different light patterns on the surface to be 

inspected that distort these projections according to their morphology. This distortion of 

light patterns is captured by the cameras of the system and are compared with their 

calibration and correlated not only with the reference points that are still on the surface 
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of the sample, but also with the cloud of reference points acquired by photogrammetry. 

After that, we obtain a network with thousands of three-dimensional coordinates that go 

through an interpolation process, called polygonization, creating the surface of the 

digital twin of the samples to be used in this work. Figure 5.2 shows the test in progress, 

where in Figure 5.2 a) can see the beam of blue light patterns on the sample surface 

when performing the measurements and in Figure 5.2 b) can see the digital twin of the 

sample. 

 

 

Figure 5. 2: Structured light test: a) blue area being acquired and converted into a 

surface; b) digital twin of this sample. 

Before performing the measurements for the development of this work, a series of 

experiments were performed to optimize data acquisition while maintaining a high 

resolution combined with low data volume. In this process, parameters such as lighting 

intensity, exposure time, working distance, incidence angle and captured area volume 

were tested. Table 5.1 shows the optimal parameters found as a result of these tests and 

which were used afterwards. 
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Table 5. 1: Optimized parameters for SLS on pipe geometries. 

SLS optimized parameters 

Lighting 400 to 500 nm 

Shutter 3 µs 

Working distance 500 mm 

Acquisition rate 2 KHz 

Incidence angle 27º 

Captured volume 170 x 130 x 130 mm 

 

The digital twin for all samples described in item 4.1 were performed by 

structured light. As a representative example of the results obtained the sample "Pipe 

01" can be seen in Figure 5.3 a) as well as detailed regions of defects, which can be seen 

in Figure 5.3 b) to f). 

 

Figure 5. 3: In a) digital twin of Pipe 01. From b) to f) are the defects in details of Pipe 

01. 
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Once the digital twin was done it is possible, through the software of the 

equipment itself, to make manual measurements regarding the dimensions of the 

defects. Table 5.2 and 5.3 show the measurements done for each one of the 33 defects 

presented on section 4.1 being its length, width, depth, perimeter and area. These 

measurements together with the digital coordinates acquired in the test are used to 

validate the results of other techniques performance on the developed algorithm for 

defects analysis and recognition. 

Table 5. 2: Defects dimensions measured for the 33 defects presented on section 4.1 by 

SLS commercial software – Part 1. 

Measurements performed manually through the digital twin in the SLS 

commercial software 

Defect Length (x) Width (y) Depth (z) Perimeter (mm) Area (mm2) 

Defect 1 26.04 19.81 0.76 77.33 344.68 

Defect 2 23.43 19.96 0.51 64.50 274.35 

Defect 3 28.89 21.55 0.69 80.52 422.21 

Defect 4 36.79 5.88 0.64 77.56 138.63 

Defect 5 186.30 4.86 1.34 390.56 313.28 

Defect 6 228.55 5.02 0.98 457.23 287.71 

Defect 7 253.29 3.98 1.46 510.87 340.29 

Defect 8 201.83 8.54 0.87 409.12 284.78 

Defect 9 228.41 4.89 0.99 464.11 307.48 

Defect 10 44.56 6.85 0.36 98.94 225.63 

Defect 11 50.23 7.88 0.59 102.94 313.84 

Defect 12 42.97 6.71 0.52 98.39 212.62 

Defect 13 200.75 3.87 0.85 421.39 288.65 

Defect 14 232.28 4.52 0.36 478.59 292.87 

Defect 15 254.56 3.56 0.37 514.89 319.29 

Defect 16 217.78 5.34 0.32 432.54 261.34 

Defect 17 216.23 4.58 0.41 439.14 260.48 

Defect 18 210.53 42.32 1.56 585.92 421.21 

Defect 19 189.53 5.04 0.63 383.73 246.98 

Defect 20 199.83 32.02 0.61 765.82 4857.89 

Defect 21 47.93 5.95 0.73 100.01 195.56 

Defect 22 46.21 5.56 0.67 103.06 182.97 

Defect 23 47.45 4.07 0.33 92.56 145.36 

Defect 24 196.04 32.06 1.52 530.38 4659.87 

Defect 25 68.54 10.25 2.13 157.34 493.07 

Defect 26 64.76 9.43 2.97 144.37 317.42 



91 

 

Table 5. 3: Defects dimensions measured for the 33 defects presented on section 4.1 by 

SLS commercial software – Part 2 continuation. 

Measurements performed manually through the digital twin in the SLS 

commercial software 

Defect Length (x) Width (y) Depth (z) Perimeter (mm) Area (mm2) 

Defect 27 45.89 11.08 1.99 110.34 397.83 

Defect 28 30.01 2.10 1.72 70.06 74.89 

Defect 29 99.96 0.50 0.85 204.39 83.97 

Defect 30 79.83 0.50 0.93 169.34 64.34 

Defect 31 40.02 0.50 0.81 100.39 30.00 

Defect 32 29.28 10.70 1.10 70.03 180.36 

Defect 33 25.01 2.10 1.74 76.57 78.94 

 

5.2.  Optical 3D measurements – Laser line (LL) DSMAX 

No preparation of the sample to be inspected is required for the laser line testing.  

Once the sample is positioned on the automatic inspection table, the test is ready to 

start. The table has three encoder motors that have the functions to rotate the tubular 

sample, translate the laser sensor and adjust the distance between the laser sensor and 

the sample. Figure 5.4 a) shows one sample positioned on the automatic inspection table 

waiting for the test to be performed and in Figure 5.4 b) shows the moment during 

inspection of the area close to defects 10, 11 and 12. 

 

 

Figure 5. 4: In a) a sample is shown ready to start the tests; b) scan of a region close to 

defects 10, 11 and 12 is shown. 
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As in the structured light test, at the end of the inspection a network with 

thousands of three-dimensional coordinates is obtained that go through an interpolation 

process creating the digital surface of the inspected area. The main difference between 

laser line scanning and structured light scanning is that in the case of laser line no 

sample preparation or calibration is required, and the test is dynamic, i.e. there is the 

relative movement between the sensor and the sample to be inspected. Figure 5.5 shows 

a representative result of the laser line inspection of defect 4. 

 

 

Figure 5. 5: Result of laser line scanner of defect 4. 

 

In order to achieve optimized results in relation to the spatial resolution of the 

inspected areas, volume of data and quality of the inspection, it was essential to perform 

tests to define the inspection parameters. Thus, Table 5.4 shows the main parameters 

that satisfy the conditions listed for the inspection of a complete sample. The digital 

coordinates acquired in the test are used to compare the results of other techniques and 

for the development of the algorithm for analysis and recognition of defects. 
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Table 5. 4: Optimized parameters used for the laser line inspection. 

Optimized parameters 

Shutter 2 µs 

Acquisition frequency 4 kHz 

Working distance 9.0 mm 

Inspection speed 900 mm/s 

Laser tilt 90º 

 

Once the parameter optimization study had been performed, all samples were 

inspected in order to generate the data for each defect. These data were exported to the 

SLS commercial software in order to maintain the same measurement methodology of 

the defect characteristics for the optical techniques and to be able to compare the 

assertiveness of the inspections made by the laser line technique. Table 5.5 and 5.6 

shows the results of the measurements obtained by the laser line with the optimized 

parameters in order to reduce the volume of data while maintaining a high resolution. 

 

Table 5. 5: Defects dimensions measured of the 33 defects inspected by laser line Part 1. 

Measurements performed manually through the Laser Line results in the SLS 

commercial software 

Defect Length (x) Width (y) Depth (z) Perimeter (mm) Area (mm2) 

Defect 1 25.84 20.01 0.77 68.40 362.75 

Defect 2 23.53 19.79 0.50 66.95 284.94 

Defect 3 28.83 21.46 0.67 76.49 423.21 

Defect 4 37.05 6.04 0.73 82.58 125.20 

Defect 5 186.54 4.97 1.36 394.62 331.36 

Defect 6 228.53 5.09 0.88 455.76 284.70 

Defect 7 253.38 3.92 1.51 507.40 344.88 

Defect 8 201.98 8.59 0.93 412.16 291.89 

Defect 9 228.63 4.90 0.93 459.13 311.24 
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Table 5. 6: Defects dimensions measured of the 33 defects inspected by laser line – Part 

2 continuation. 

Measurements performed manually through the Laser Line results in the 

SLS commercial software 

Defect Length (x) Width (y) Depth (z) Perimeter (mm) Area (mm2) 

Defect 10 44.94 7.07 0.33 108.93 234.52 

Defect 11 50.23 7.72 0.63 108.29 321.79 

Defect 12 43.13 6.82 0.45 100.41 194.03 

Defect 13 200.76 3.99 0.76 410.32 313.64 

Defect 14 232.42 4.38 0.40 471.81 304.26 

Defect 15 254.41 3.81 0.35 522.14 318.95 

Defect 16 218.03 5.27 0.39 424.40 246.39 

Defect 17 216.38 4.57 0.37 440.89 278.23 

Defect 18 210.49 42.24 1.55 591.94 433.31 

Defect 19 189.60 5.26 0.63 379.84 251.42 

Defect 20 200.09 31.99 0.56 759.98 4882.04 

Defect 21 47.97 5.79 0.73 107.10 195.07 

Defect 22 46.47 5.84 0.72 106.87 194.08 

Defect 23 47.53 4.10 0.25 93.82 165.14 

Defect 24 196.47 32.20 1.60 524.61 4675.54 

Defect 25 68.64 10.33 2.20 150.52 501.04 

Defect 26 64.98 9.52 3.09 141.51 330.17 

Defect 27 45.84 11.08 1.91 105.52 412.17 

Defect 28 30.20 2.29 1.80 76.01 74.53 

Defect 29 100.25 0.78 0.80 195.63 77.79 

Defect 30 80.21 0.61 0.94 168.00 67.52 

Defect 31 40.12 0.57 0.73 99.44 34.21 

Defect 32 29.20 10.88 1.13 69.26 181.19 

Defect 33 25.17 2.17 1.74 74.61 72.34 

 

 The results of SLS inspection and those of LL inspection are very close to each 

other, as expected and as can be seen in representatively by length in Figure 5.6. with 

standard deviation of 0.15 mm for the length, 0.13 mm for the width, 0.06 mm for the 

depth, 5.57 mm for the perimeter and 10.69 mm2 for the area. Despite the small 

differences, in reality they are even smaller, because there is the human error associated 

with measurements made manually by the SLS commercial software. Figure 5.7 a) 

shows the result of defect 32 for the SLS data, b) for the LL data and c) shows the 
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automatic comparison by the commercial SLS software for this defect. This defect is 

interesting and representative of the others, because it has a drop shape that starts at the 

material surface and grows in all directions. Still in figure 5.7 c) it is possible to notice 

that the maximal difference in dimensions between the SLS and the LL is 

approximately 0.2 mm. 

 

 

Figure 5. 6: Comparison of measurements obtained for length for SLS and LL 

inspections. 

 

 

Figure 5. 7: Comparison of SLS and LL results by SLS commercial software. 

 A second discussion that can still be made is about the volume of data generated 

between the two techniques. Figure 5.8 shows a comparison of the meshes of the same 
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region inspected by SLS in a), and by LL in b). It is evident the great difference in the 

mesh of points generated, which means that the volume of data obtained by the LL is 

proportionally larger. However, while still observing Figure 5.8 c), which represents the 

dimensional comparison between a) and b), it is noticeable that there is not an 

expressive quality gain for the final resolution of the data. Thus, it is possible to 

optimize the inspection parameters by LL, as described in Table 5.4 to generate a result 

of the same quality and with a lower volume of data, but with the advantages associated 

with the LL. 

 

 

Figure 5. 8: Comparison of the point mesh generated in the same region between SLS in 

a) increase contrast; b) LL; c) dimensional difference. 

  

Based on the presented results, it is possible to state that the inspection 

methodology developed for LL has results in resolution equivalent to the commercial 

SLS system. However, unlike the SLS, LL inspection is dynamic, has a low cycle time, 

and is easy to multiplex due to its association with encoders, making it an excellent 

candidate for automated surface inspection. It is also important to emphasize the 

importance of automating the analysis of the data generated by inspection, since the 

commercially available software must be operated manually, leading to a great deal of 

data processing time and errors related to human machine interaction. 

 

5.3.  Electromagnetic system 
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In this session the development of the electromagnetic inspection methodology 

that hybridizes the EC technique with hall effect-based profiling will be presented. In 

addition, the main results acquired both in the laboratory and in the field will also be 

presented. 

5.3.1.  Proof of concept of the proposed solution 

Before the actual development of the automatic surface inspection system by 

electromagnetic techniques, a proof of the proposed concept was performed. The 

concept consists in a rod, where on the top there is a hall sensor between two magnets 

having the function to be a profilometer based on the magnetic flux variation acquired 

by the hall sensor when the lowest magnet moves. Besides that, on the rod's bottom 

there is a small EC probe that detect small defects. Generally, the magnetic profilometer 

was responsible to monitor geometric variations on the surface of the material and it 

could also indicate large and shallow defects as a "molly whopper". ECs was also 

responsible for the detection of smaller defects such as cracks and scratches. Figure 5.9 

shows the rod's concept. 

 

 

Figure 5. 9: Concept of proposed solution. 

Although this solution can be applied to both external and internal pipe surfaces, 

this work focus on the development of the solution for inspection of external surfaces as 

for example pipes and mandrel bar. Since the external inspection geometry of products 

(pipes) and tools (mandrel) has a cylindrical shape, the proposed concept for an external 

device is a ring with several rods, as can be exemplary seen in Figure 5.10. 
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Figure 5. 10: Ring concept of the inspection system. 

 

 Figure 5.11 shows the results of this preliminary test, where it is possible to see 

the potential of the methodology for defect detection. The results presented in Figure 

5.11 show the detection of the defect both by EC and by the profilometer based on Hall 

sensor. As the use of the profilometer was a measure focused on the variation of the 

geometric profile of the sample throughout the inspection, this work focuses on the 

development of EC sensors enabling them as a solution for in-line and on-line 

inspection in the pipe mill processes. 

 

 

Figure 5. 11: Inspection result for both EC and Hall sensor. 

 

In subsequent sessions the development and optimization of both EC sensors and 

Hall sensor-based profiling as well as their representative experimental results will be 

shown in detail. It was decided to segregate the EC probes from the bottom of the rod 

aiming the optimization of the mechanical robustness. 

5.3.2.  Eddy current probe development 
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In order to analyze the best coil configuration for defect detection in tubular surface, 

several EC probes with different geometries and operational mode were studied. The PP 

sample was used for this study. Table 5.7 presents the main configurations of the 

evaluated probes and a brief evaluation of their results. 

 

Table 5. 7: Several EC probes evaluation. 

Evaluated probes 

Coil 
Operation 

mode 

Coil 

diameter 

(mm) 

Picture Evaluation 

Coil 1 Absolute 27.5 x 16 

 

It showed good detection of defects, 

except for longitudinal ones. This is 

due to the fact that the oval coil has 

different sensitivities according to the 

defect orientation. 

Coil 2 Absolute 18.5 

 

Detected all defects, but with low 

signal-to-noise ratio. Smaller defects 

had their detection affected, which 

may be associated with high noise and 

coil diameter. 

Coil 3 Absolute 9.5 
 

Detected all defects with good signal-

to-noise ratio. In relation to Coil 2. the 

frequency used was lower and the 

diameter corresponds to 

approximately half, factors that 

facilitated the detection of small 

discontinuities. 

Coil 4 Differential 13.6 

 

It was possible to detect all defects, 

but the signal-to-noise ratio was 

unsatisfactory. 

Coil 5 Differential 7 

 

It detected all defects with a higher 

signal-to-noise ratio. Compared to the 

previous coil versions, this one had its 

diameter reduced and a ferrite core 

was added. 
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Both probes 5 and 3 showed good defect detection capacity on tubes surface. 

Hence, it was defined that the best coil for the development of this project would be coil 

5 because it showed good results for the detection of defects and it was built with two 

coils connected in a differential mode, which reduces the influence of lift-off and 

microstructure variations throughout the inspection. The main construction parameters 

of coil 5 are summarized in Table 5.8. 

 

Table 5. 8: Main construction parameters of coil 5. 

Parameter Value 

Diameter (Ø) 8.0 mm 

Number of turns (N) 800 

Height (H) 3.5 mm 

Ø core 3.5 mm 

Core type Ferrite 

Wire AWG 38 

 

 

Operating frequency optimization of Eddy current probes via COMSOL 

Multiphysics® 5.4:  

Since coil 5 was defined as the best coil to be applied for inspection of defects in 

tubular surfaces, the optimization process of the coils operating frequency was initiated. 

Frequency is the main parameter for the detection of defects, since it will control the 

penetration depth of the ECs and, consequently, the current density in the material. 

To optimize coil 5 operating frequency, a computational model was performed 

where coil 5 scans the defects along the PP sample, ranging the operating frequency of 

the coil from 1 to 10 kHz. The proposed system was modeled using finite element 



101 

 

analysis (COMSOL Multiphysics 5.4). The model was set up using AC/DC module and 

magnetic interface of COMSOL (Multiphysics, 2018). The probe is a small array sensor 

with a group of 4 helicoidal coils in the transmit-receive mode. While large sensor 

arrays are generally required for inspecting through thick materials, coatings or 

insulations; small sensor arrays can be used to create high spatial resolution property 

images (ZILBERSTEIN, SHAZ et al., 2013) (Multiphysics, 2018). Initially, the PP 

sample with it is defects, coil 5 and mesh environment were modeled to be applied in 

the simulation. Figure 5.12 a) and b) shows the model of sample PP, with 2000 points 

along its length a 10 point along its diameter, used in the simulation and in Figure 5.12 

c) shows the sample PP used in this optimization process. Besides that, 5000 points 

were used for each defect region. Figure 5.13 a) shows the model of coil 5 used in the 

simulation and in Figure 5.13 b) shows the used mesh for the coil 5 model. The mesh 

used for this simulation has a growth rate of 1.3. being a maximum size per element of 

15 mm for non-complex regions and a minimum size of 0.3 mm for more complex 

regions, being close to the regions of the defects.  Electromagnetic properties of carbon 

and low-alloy steel were used as input parameters of the model (σ = 10.60% IACS and 

µ = 1.01 H/m). The control user meshed function of COMSOL was used with a 

specified minimum element size of 0.03 mm. Figure 5.14 shows the mesh surrounding 

PP sample simulation. 

 

 

Figure 5. 12: In a) and b) are shown the different views model of sample PP used in the 

simulation; c) shows the sample PP used in this optimization process. 
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Figure 5. 13: In a) is shown the model of EC probe used in the simulation; b) shows the 

used mesh. 

 

Figure 5. 14: Mesh used in the simulation to optimize the frequency. 

 

The parametric study was solved for four different excitation frequencies: 1 kHz, 

3 kHz, 5 kHz and 10 kHz. These frequencies are related to the penetration depth. The 

penetration depth is limited by the skin depth at high frequencies and by the sensor 

geometry at low frequencies (GOLDFINE, SHEIRETOV, 2008). Since EC techniques 

use an AC current to excite the coil with one frequency, the skin depth is limited to one 

depth of penetration which relates to the depth at which the field amplitude has 

decreased to 1/e in comparison to its value at the surface (GEDNEY, 1994). The 

simulation results for the frequency variation can be seen in Figure 5.15. It is noticed 

that there is not a very significant variation for the absolute impedance, but the 

frequency of 5 kHz showed to be the more stable frequency to absorb any fluctuation, 
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with a better continuous response in relation to the amplitude signal, and generating 

slightly a better signal for the detection of defects. 

 

 

Figure 5. 15: Frequency optimization scan result. 

 

Figure 5.16 shows the result in impedance of the simulation using the frequency 

of 5 kHz for the inspection along the sample PP. It is possible to clearly see the 

detection of all defects present in the sample PP. 

 

 

Figure 5. 16: Detection of the 5 defects of the PP sample in impedance along the 

inspection. 
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Validation of the computational model with physical tests: 

 

In order to validate the results found in the simulation, real scans with 

frequencies of 1, 3, 5 and 10 kHz applied to coil 5 were performed. The smallest defect 

of PP sample, defect 4. is shown as an example of the results of the real tests in Figure 

5.17 and Figure 5.18. where the frequency variation of 1, 3, 5 and 10 kHz are 

respectively represented from a) to d) in both figures. It is possible to observe through 

these results that although it is possible to detect this defect in all frequencies, the 

frequency of 1 kHz presents the worst noise signal ratio, while the frequency of 5 kHz 

presents the highest intensity of the response signal in impedance. This difference in 

results between the optimized frequency of 5 kHz and the nonideal frequency can be 

explained for a penetration depth variation of the current flow induced by the probe into 

the material, since this depth is inversely proportional to the frequency, as shown in 

Equation 2.1. 

 

 

Figure 5. 17: 2D Inspection impedance map of sample PP with coil 5 for different 

frequencies. 
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Figure 5. 18: 3D Inspection impedance map of sample PP with coil 5 for different 

frequencies 

For frequency values below the optimized one, the penetration depth increases, 

reducing the current density on the surface of the sample and consequently reducing the 

amplitude response of the defect in relation to the base signal of the tube, since defect 4 

is shallow. On the other hand, for values above this frequency, the penetration depth 

drops, preventing the current flow from interacting with the full depth of the defect, 

reducing its response signal. Figures 5.19 and 5.20 show the detection of defects 1, 2, 3 

and 5 of sample PP by the inspection of coil 5 with the optimized frequency of 5 kHz. 
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Figure 5. 19: 2D impedance inspection map of sample PP with coil 5 with the optimized 

frequency of 5 kHz. Detection of defects 1, 2, 3 and 5. 
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Figure 5. 20: 2D impedance inspection map of sample PP with coil 5 with the optimized 

frequency of 5 kHz. Detection of defects 1, 2, 3 and 5. 

 

Figure 5.21 shows the impedance result of the real test using the frequency of 5 

kHz for the inspection along the sample PP, described on Table 4.1, and Figure 5.22 is 

the overlap of actual and simulation results, validating the simulation and the 

experiments. 
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Figure 5. 21: Detection of the 5 defects of the PP sample in impedance along the real 

inspection. 

 

Figure 5. 22: Matching the results of the simulation and of the actual tests for the PP 

sample inspection with the coil 5 and optimized frequency of 5 kHz, showing the 

validation of the simulation with the experiment. 

 

Therefore, through the COMSOL simulation and the tests performed in the PP 

sample, it was shown that coil 5 is not only capable of detecting defects with good 
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signal-to-noise ratio, but also that its optimal operation frequency for detecting surface 

defects in tubular surfaces is 5 kHz. 

 

EC probe sensitivity tests: 

After optimization of the construction parameters and operating frequency of the 

EC probe, tests to evaluate the sensitivity of the developed probe were performed. For 

this purpose, inspections were performed manually along the axial axis of the sample 

body and each inspection was circularly spaced of 16 mm, i.e., there was no blind spot 

between inspections. The applied operational parameters of the inspection were: 

Frequency = 5 kHz; Supply voltage = 4 V; Gain = 32 dB; Rotation = 242º and Vertical 

Gain = 10 dB. Table 5.9 summarizes the results representative of the smallest defects 

described on Table 4.2 – 4.1. 

Usually the impedance vector amplitude value is used for defect detection. 

However, in a more complete analysis the four variables related to the EC test 

(impedance vector amplitude, impedance vector phase, resistance and inductive 

reactance) are evaluated. The first two are related to the last two through vector 

transformations. Analyzing the inspection data, it was observed that the phase variable 

does not contribute to the detection, as expected. Moreover, because of the small 

geometry of some defects, they are better detected by the components of the impedance 

vector (resistance and inductive reactance) rather than by their own amplitude.  Thus, it 

is shown that the smallest defect detected, in laboratory conditions, has dimensions of 

30 mm x 0.5 mm x 0.8 mm (length X width X depth). 
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Table 5. 9: Representative results of the sensitivity tests. 

Defect Eddy currents response 
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Probe construction and robustness testing: 

After the development of the EC probe and the respective sensitivity tests, the 

construction of the probes to be used in the prototype inspection system began. Figure 

5.23 shows in a) the probe design and in b) the probe already built. As can be seen in 

Figure 5.24 the probes have a special design with a curvature to perform a better 

coupling on the cylindrical surface of the mandrel/tube and have a rubberized region to 

receive the impact and ensure that the probe is straight and parallel to the inspected 

surface throughout the inspection. Figure 5.24 illustrates the behavior of the probe and 

geometric sensors throughout the inspection of cylindrical geometry. 

 

 

Figure 5. 23: In a) design of the EC probe to be used in the prototype and in b) probe 

assembled to be used in the prototype. 

 

 

Figure 5. 24: Working inspection system illustration, where the dynamics of the EC probes and 

geometric sensors can be observed. 
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As one of the objectives of this work is the construction of the prototype for 

production line tests, robustness tests were also performed on developed components. 

For this, a curved bulkhead was used, with a rough surface, fixed on a rotating disk. The 

probe was suspended on a fixed bar, so that the rotation of the disk would cause an 

impact of the bulkhead with the probe. Figure 5.25 shows the experimental apparatus 

used. In this test, a rotation of 150 rpm was used on the disc, lasting 96 h, making a total 

of 864.000 impacts between the bulkhead and the probe.  After the end of the test, the 

probe showed no appreciable wear that could compromise its coupling in the tube or its 

positioning. 

 

Figure 5. 25: Probe robustness test setup. 

 

5.3.3.  Construction of geometric sensors – Hall: 

The second essential component of the developed electromagnetic prototype in 

this work are the geometric sensors based on the Hall effect. Basically, the angular 

variation of the rod implies a variation of the magnetic flux that passes through the Hall 

effect sensor, exciting it and thus generating voltage measurements. Through these 

measurements it is possible to compose the profile of the inspected region with 

resolutions smaller than 1.0 mm in the longitudinal direction. Figure 5.26 a) shows the 

rod design of the geometric sensor and in b) shows the geometric sensor already built. 

As with EC probes, these components were also submitted to the same robustness tests 

having similar results. 
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Figure 5. 26: In a) design of the geometric sensor to be used in the prototype and in b) 

geometric sensor mounted to be used in the prototype. 

The geometric sensor is made with a pair of magnets that rotate around a Hall 

sensor fixed on its axis, thus, who turns is a magnet and the electronic component is 

fixed. If the magnets rotated 360 degrees the pair of magnets around the axis, a senoid 

would be obtained. However, the angle at which the geometric sensor will work is 

defined, i.e. what the thickness range and accuracy will measure. The Hall sensor used 

in this work originally generates a senoid of +5 V to -5 V, however for the application 

in the geometric sensor the range from +1 V to 4 V are used. This is done so that the 

used range approaches a straight line, avoiding the maximum points and also the 

passage through the zero. Between 4 V and 5 V the senoid curve is disadvantageous, 

because a small variation in the position of the sensor in relation to the magnet means a 

huge variation in the measurement. In the range between +1 V and +4 V, there is a more 

uniform behavior according to Weid et al., (2008). 

It is important to note that each sensor has a different response, depending on: 1) 

natural variations of the Hall sensor; 2) natural variations of the magnet; 3) variations in 

the mechanical assembly of the sensor. For this, all sensors were previously calibrated, 

in a distance scale, as can be seen in Figure 5.27. The distance scale represents all the 

thicknesses that must be measured by the sensor, representing the measuring range. 
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Figure 5. 27: Distance scale for calibration of geometric sensors. 

 

To perform the tests on some of the defects described in section 4.1, a trolley 

associated with a geometric sensor was built and can be seen in Figure 5.28. With the 

help of this cart, a measurement matrix was performed, and the results can be seen in 

table 5.11. It is possible to observe in the results presented in Table 5.10 the good signal 

noise ratio in the detection of defects in the longitudinal direction, however the lateral 

resolution depends on the distance of steps, or between sensors, being directly 

proportional to this clearance. 

 

 

Figure 5. 28: Inspection trolley model for geometric sensor in a) and inspection in 

progress in b). 
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Table 5. 10: Representative results of the geometric sensor tests. 

Defect Eddy currents response 
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Electromagnetic prototype assembling and laboratory tests: 

The inspection system was designed to have a set of 16 geometry sensors and 18 

EC probes. Each EC probe has 4 EC coils connected in a differential way to make 2 

pairs. That means in the end that, a total of 36 EC channels were divided in 18 probes, 

covering the mandrel surface. Finally, Figure 5.29 shows in a) the prototype design of 

the inspection system and in b) the prototype already assembled and ready to be tested.   

 

 

Figure 5. 29: Design of the prototype inspection system in a) and b) the built prototype. 

 

After the construction of the prototype, laboratory tests were performed to verify 

the system. These tests were performed by passing samples of tubes manually through 

the inspection system. Figure 5.30 exemplifies the dynamics of the tests and Figures 

5.31 and 5.32 show respectively the representative results of the tests with the geometric 

sensors and with the EC probes. 
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Figure 5. 30: In a) the dynamics of the tests related to the geometric sensors can be observed 

and in b) the dynamics of the tests related to the EC probes. 

Figure 5.31 shows the profiling of one geometric sensor along a sample that had 

3 different defects, the first one being a material adhesion, signaled by the green arrows, 

and two defects simulating material loss, signaled by the red arrows.  The positive 

response of the signals to the areas representing the green arrow is easily observed, 

showing the adhesion of material in the response signal exposed in the lower part of the 

Figure, as well as the opposite for defect 4 representative of a loss of material. 

 

 

Figure 5. 31: Tests representative of the responses of geometric sensors in relation to profiling 

of an area with adhesion defects or loss of material. 
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Figure 5.32 shows representatively the results of the EC probe for the inspection 

of one defect in the transversal direction and another in the longitudinal direction by the 

built prototype. It is possible to observe both the detection response in the signals shown 

by the green arrows and their respective reconstructions in an impedance map signaled 

by the red arrows. After the laboratory tests, the system was packed and transported for 

the production line test. 

 

 

Figure 5. 32: Tests representative of EC probe responses regarding inspection of small defects 

in transversal and longitudinal directions. 

 

Prototype test in production line – Mandrel Mill  

After the construction and testing of the electromagnetic prototype in the 

laboratory, the system was taken to the production line of the Vallourec’s mandrel mill 

to perform tests on the production line based on the worst boundary conditions of the 

production process, i.e., 22 m long mandrels, 2.0 m/s mandrel speed, grease dirty 

mandrels and uninterrupted cycle. Seven mandrels were used for the tests, being the 

first called mandrel I with Ø 163.00 mm diameter containing several defects, as can be 

seen in Figure 5.33, a second called mandrel II with Ø 165.50 mm containing a 

transversal defect along its entire diameter, as can be seen in Figure 5.34, and finally, 5 
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mandrels called mandrel III-VII with Ø 165.50 mm containing no defects. A tape was 

placed on the mandrel I along its circumference to be used as a reference for the 

analysis of the results, as can be seen in the upper left corner of Figure 5.33. 

 

 

Figure 5. 33: Example of 11 different defects contained in the mandrel I. 

 

 

Figure 5. 34: Single transversal defect contained along the circumference of mandrel II. 

 

 Figure 5.35 shows in a) the front view of the system installed on the production 

line where it can be observed that the EC probes cover a hundred percent of the 



120 

 

mandrel's surface, in b) it is possible to observe that the system was installed before the 

mandrel's and in c) exemplary shows the movement of one mandrel’s through the 

inspection system. 

 

 

Figure 5. 35: In a) the front view of the system installed on the production line, in b) it is 

possible to observe the installation point of the system on the production line and in c) it is 

exemplary the movement of the mandrels through the inspection system. 

 

Geometric sensor results 

The results of the inspection by the geometric sensors will be shown 

representatively for the mandrel I detecting the defect 11 from Figure 5.36 and the 

diameter measurements performed for all the inspected mandrels will be presented. 

Figure 5.36 shows the result of one of the geometric sensors along the 22 m of the 

mandrel profile, where in the signal responses the detection of some indications can 

already be seen. The great indication right at the beginning of the inspection, left hand 

side of Figure 5.36 is due to a tape glued around the entire mandrel to be used as a 

reference point. 
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Figure 5. 36: Signal responses for a geometric sensor during mandrel I inspection. 

 

Figure 5.37 shows in detail a region of the indication where the 11th mandrel I 

defect is located. It shows the "zoom" of the inspected region, where it can be observed 

the indication in green on the image enlarged to the right and perform the quantification 

of the defect depth that was 2.5 ± 0.1mm. 

 

 

Figure 5. 37: Detection and depth quantification mandrel I 11th defect by geometric sensors. 
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Figure 5.38 shows in detail an indication region for the mandrel II where its only 

defect is located along its circumference. In this Figure, the indentation in green can be 

seen in the enlarged image to the right and the quantification of the defect depth which 

was 2.1 ± 0.1mm. 

 

 

Figure 5. 38: Detection and depth quantification mandrel II only defect by geometric sensors. 

 

Figure 5.39 a) shows the diameter analysis made through the data collected by 

the geometric sensors and in b) the results of the measurement of the inspected 

mandrels' diameters are summarized representatively. The system presented 

measurements with accuracies lower than 2.0 mm.  This precision could, theoretically, 

reach about 0.1 mm, either by calibrating the sensors or by increasing their number. 
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Figure 5. 39: In (a) diameter measurement of mandrels by geometric sensors and in (b) 

representative summary of the achieved diameter measurements. 

 

Eddy current results 

EC probe inspection results are shown representatively both in their detection 

signals and for the impedance response inspection map. Figure 5.40 shows the result of 

one of the EC probes along the 22 m of mandrel profile, where in the signal responses 

the detection of some indications can already be seen. The great indication right at the 

beginning of the inspection, on the left-hand side of Figure 5.40, is due to the tape glued 

around the entire mandrel circumference segment to be used as a reference. 

 

 

Figure 5. 40: Signal responses for an EC probe throughout mandrel I inspection. 

 

Figure 5.41 shows the map in impedance for the inspection performed along the 

22 meters in the mandrel I, larger number of defects, and it is possible to notice areas 
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with indications in red/orange. Figure 5.42 shows the detection of the reference tape 

glued to the mandrel I. Still in Figure 5.41 it is possible to notice that there are regions 

with higher indication concentrations in the initial region of the mandrel. By analyzing 

details of the areas inspected in this map, it is possible to see the response both on a map 

and on the signals of the EC for defect detection as shown in Figures 5.43, 5.44 and 

5.45.  

 

 

Figure 5. 41: Impedance map of EC inspection for mandrel I. 

 

Figure 5. 42: Detection of the reference tape by the EC probes along the entire circumference 

of the mandrel I. 
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Figure 5.43 shows the detection of mandrel I defect 1 in both the impedance map 

and the resistance signals, inductive reactance and impedance plane. It is possible to 

clearly identify the quality of the signal-to-noise ratio in the defect detection, as well as 

the characteristic Figure in the impedance plane, lissajou figure, which distinguishes the 

detection of defects by EC probes operated in differential mode. These signals are 

representative of the signals detected also for defects 2 and 8 of the mandrel which are 

presented in Figures 5.44 and 5.45. These defects represent the different variety of 

defects present in the mandrel I. 

 

Figure 5. 43: Detection of the defect 1 (smooth loss of material) in mandrel I by EC probe. 

 

 

Figure 5. 44: Detection of the defect 2 (loss of material) in mandrel I by EC probe. 
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Figure 5. 45: Detection of the defect 8 (several cracks) in mandrel I by EC probe. 

 

The same inspection and data analysis procedure was carried out for mandrel 2 

which had only a transversal crack that surrounded the entire surface of this mandrel. 

Figure 5.46 shows the detection of this defect for the impedance map as well as for the 

resistance component, inductive reactance and in the impedance, plane forming again 

the lissajou. 

 

 

Figure 5. 46: Detection of the circumferential crack in mandrel II by EC probe. 

 

 Figure 5.47 shows mandrel III inspection results, which is representative of the 

results found for the mandrels that did not have any defects. As expected, there are no 

relevant indications in the impedance map and the signal analysis does not show also 

any relevant information. The results presented throughout this section are 

representative of the results found after 77 inspection of the 7 mandrels (11 inspections 

each one) present for the tests. 
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Figure 5. 47: Mandrel III impedance map. 

 

As well as for the results of the optical technique, based on the presented results, 

it is possible to state that the electromagnetic inspection methodology developed has 

results extremely positive for the surface defect detection, still proven in an industrial 

environment. Comparing with the optical methodology, the electromagnetic 

methodology has the subsurface detection capability and significantly lower data 

volume due to its lower acquisition rate. However, the geometric fidelity and lateral 

resolution of the results obtained by the LL are much higher than that compared to the 

electromagnetic system. Thus, it is perceived that the two different methodologies are 

not competitive with each other, but complementary, in order to ensure that they cover 

any type of surface defects. The decision to use one of the methodologies or the 

simultaneity of the two will be purely based on the necessity and contouring conditions 

of the final application. 

Again, it is important to emphasize the importance of an algorithm able to 

handle analysis of data generated by different techniques and based on the same 

evaluation methodology aiming the automatization of the defects recognition and 

characterization. 
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5.4.  Development and validation of defect recognition and 

characterization algorithm 

This topic described each step of the development of the algorithm to recognize 

and classify defects based on different data sets. The automatic recognition algorithm 

will be detailed, showing how each processing step is indispensable. The algorithm 

applied to the data processing is summarized in Figure 5.48. It is divided in four steps, 

each one with sub-steps: Import data, pre-processing and the processing itself. These are 

the necessary steps to prepare the data to the classification routine. 

 

 

Figure 5. 48: Stages of the data processing algorithm developed in this work. 

 

 

 



129 

 

5.4.1.  Data import and pre-processing 

Data from the electromagnetic system will be used to show the development of 

algorithms in this subsection. 

 

a) Data import 

The algorithm begins after all the data acquisition from the inspection system is 

done, starting the pre-processing step. The goal of this stage is to process the data in 

order to prepare it for the application of classification algorithms, which was 

responsible for the defects classification into the categories to be further defined.  The 

data can be received from different sensors, as EC sensors, Hall sensors and optical 3D 

sensors.  

 

EC sensors  

The data received from EC sensors is basically structured in a two columns 

matrix for each probe connected to the inspection system. The two columns are, 

respectively, the values of resistance and inductive reactance of the coils. The first line 

of each matrix corresponds to the point where the sensors started to inspect the sample, 

and the last corresponds to the point where the sensors stopped, following the line in the 

sample surface. For example, if the system has 18 probes connected to it, each one will 

generate a two columns matrix of data associated to the points in the line inspected for 

each probe. To transform this set of matrices in one single map, the data must be 

transformed through mathematical operations that will be explored in the next 

subsections. 

 

Hall sensors 

Similarly, to the EC the data received from the Hall sensors is structured in one 

matrix for each probe, where the first and last point corresponds to the first and last 

acquisition point. But, in other hand, they have only one column, that is already directly 

associated to the “height” of the measured point in relation to the sample base line, 

since the sensor is profilometer. Therefore, this data is all ready to be mounted in one 

single matrix, which will be used to build a map that reconstructs the sample surface. 
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Optical 3D sensors 

The optical 3D data from structured light and laser systems have the same format 

of data, being structured in one matrix where X, Y and Z coordinates of each measure 

points are the columns and the lines are each one of the measured points. These maps 

are the starting point for the defect detection algorithms in the processing step. All the 

operations necessary to build these maps from the imported data define what is called 

pre-processing step. 

 

b) Preprocessing 

EC data transformation (impedance calculation) 

Besides the EC sensors directly measure only R and the XL, they are not the 

parameter that effectively represents the variation of height in the sample surface, which 

is the necessary information for the surface reconstruction. This parameter, which is the 

actual parameter of interest, is the coil impedance (Z). To calculate this value, it is 

necessary to perform a transformation of the data for each measured point following the 

Equation 5.1.  

                      Equation 5. 1 

After this transformation, the two columns matrices associated to each probe, or, 

in other words, to each generatrix line in the sample surface upon which the probe has 

passed, are converted in one column matrices.  Along with the hall sensor matrices, this 

data is all ready to be mounted in a single matrix. 

Mapping matrices construction  

After the first pre-processing step, it is necessary to unify all one column matrices 

associated to each probe in one single matrix. This will generate two maps of points that 

represent the reconstruction of the surface by the EC data and Hall sensor data.  

To construct the EC map, for example, it is only necessary to mount a single 

matrix with each column equal as each one column matrix associated to each probe, 

ordered in the same sequence that the probes are installed in the equipment. The 
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procedure is equivalent for the Hall sensor data. After the matrix is constructed, they 

can be plotted by color mapping, as can be seen in Figure 5.49.   

 

 

Figure 5. 49: Map of EC impedance from PP sample. Each column numbered from 1 to 

11 is the data associated to each probe. 

 

Data normalization 

After the set of matrices for each kind of probe are converted in single matrices, 

each one of them is normalized to guarantee that the data will all belong to the same 

interval. The limits are chosen as a = 0 and b = 1 so all the points will belong to the [0, 

1] interval.     
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Smoothing by bilinear interpolation 

As can be seen in Figure 5.49 furthermore the plotted maps already represent the 

reconstruction of the measured tubular surface, they are still visually truncated and 

discontinuous. To improve them, a smoothing technique by interpolation can be 

applied. In mathematics, bilinear interpolation is an extension of linear interpolation for 

interpolating functions of two variables (e.g., x and y) on a rectilinear 2D grid. 

Bilinear interpolation considers the closest 2x2 neighborhood of known pixel 

values surrounding the unknown pixel. It then takes a weighted average of these 4 

pixels to arrive at its final interpolated value. In the analyzed case, the image is not 

composed exactly by pixels, but by one value associated to each point in the 

bidimensional space, the sample surface, what is analogous. The key idea is to perform 

linear interpolation first in one direction, and then again in the other direction. Although 

each step is linear in the sampled values and in the position, the interpolation is not 

linear but rather quadratic in the sample location. Equation 5.2 describes the process of 

bilinear interpolation (PRESS, TEUKOLSKY et al., 1992). 

                        Equation 5. 2 

Applying the bilinear interpolation to the case dataset, it is possible to receive a 

much smoother looking image, what is a main requirement for the success of the 

processing algorithms. It can be seen in Figure 5.50, for example, that the limits of the 

inhomogeneous areas are much more evident.  Once the data is pre-processed and 

smoothed, processing for feature extraction can be started. 

 

Figure 5. 50: EC impedance map of PP sample without interpolation a) and after 

bilinear interpolation b). 
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c) Processing – Features extraction 

Through the processing step can be obtained the necessary features for classifying 

the defects in the further steps. In this work, it is proposed to extract the following 

features: dx = Maximum dimension in x; A = Area; dy = Maximum dimension in y; h = 

Maximum depth; P = Perimeter; CV = Characteristic curve and N = Number of closed 

contours in the image. For this, the following steps are necessary: 

 

Determine the contour of defect candidates 

To calculate the contours of defects candidates, the “marching squares” (MS) 

algorithm was applied. According to chapter 2.3.1, to find the MS reference value N in 

the detection of the contours, i.e., the minimum intensity value to consider a point as 

part of a defect area, it has been considered that the statistical distribution of both EC 

and Hall data is normal. Therefore, after several tests N has been defined as 1.7 times 

the standard deviation for data from the Hall sensor and 0.7 times the standard deviation 

for EC data. In this approach, the defects are considered statistical outliers of the data 

distributions. The results of the contouring process for the inspections performed for 

sample PP thought EC can be seen in Figure 5.51. It is possible to observe that the 

developed algorithm recognizes the defects automatically and contours each one of 

them through the adapted algorithm of MS. 

 

 

Figure 5. 51: 2D impedance of sample PP inspection using coil 5 with optimized 

frequency of 5 kHz.  

Extracting features of the recognized defects 

Table 5.11 shows the extraction proceedings to extract features of each area 

determined by the contour. 
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Table 5. 11: Definition of the main parameters to be extracted from the contoured 

region. 

Perimeter 

Defined as the length of the isoline 

associated to the defect candidate. 

Measured directly as the number of 

points in each isoline. 

 

Dimensions in x/y 

Defined as the distance between the two 

farthest points inside the contour in the x 

or y axis directions. 

 

Minimum/maximum values 

Defined as the points with minimum and 

maximum values in the contour intern 

area. 

 

Area 

Defined as the area inside the isoline 

associated to the defect candidate. 

Measured through the Shoelace 

equation, considering a polygon P with 

vertices (xi, yi): 

 

Equation 4. 3 
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After these extracted parameters have been calculate, another important feature 

defined to characterize the defects candidates is a central line that traverses the centroid 

of the contoured regions called Characteristic Curve (CV). These lines are calculated 

through an algorithm that combines two techniques, the Voronoi tessellation and graphs 

analysis. The theoretical basis of these two methods were described in (Okabe et al., 

2009) and (Gross et al., 2013), and its can be summarized as follow. 

Voronoi Diagram is a special type of decomposition of a given space, in the case 

of this work the contoured region, determined by the distance to a given family of 

objects in space. These objects are usually called sites or generators. Each site is 

associated with a corresponding Voronoi cell, i.e. a set of all points in the given space 

which the distance to the given site is no greater than its distance from the other objects. 

In other words, it parameterizes the entire interior of the surrounded region, subdividing 

a plan in regions close to certain important or special points with which the diagrams 

are created. Already with the inner region of the contour detailed, through the adapted 

graph algorithm several lines are drawn that connect the edges of the contour 

perpendicular to their greater orientation between “dx” and “dy”. The central point of 

each of these lines is interconnected and, in this way, the characteristic curve is 

obtained.  

After obtaining the Voronoi diagram through the tessellation, all lines outside the 

defect are retained so that the central line can be found, and then converted to a graph. 

This is made to guarantee that the best way to link the initial and final vertices can be 

found. Figure 5.52 shows the contours and the characteristic curve extracted from the 

inspection impedance map of sample PP, described on Table 4.1, by coil 5 with a 

frequency of 5 kHz. 

 

 

Figure 5. 52: Extraction of the contours (in blues) and characteristic curve (in black) of 

the PP sample using MS adapted algorithms for the contours and Voronoi adapted 

algorithms for the characteristic curve. 
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d) Defects classification 

Once all the necessary parameters have been extracted from the defects, the 

procedure for classifying the defects is started. After extensive tests and studies related 

to the defect catalogues of pipe mills, a classification methodology divided into three 

stages is being proposed, which are the defect orientation, defect morphology and defect 

depth. An illustration can be seen in Figure 5.53 and the subsequent items will show 

details of the developed classification algorithm. 

 

 

Figure 5. 53: Illustration of the steps for defect classification. 

 

i. Orientation 

Based on the defect catalogues of the pipe mill, the defect orientation can be 

divided into longitudinal, transversal, oblique, circular, irregular and complex, as 

described in Figure 4.14 of chapter 4.5.2. To separate each of these defect orientations, 

3 non-dimensional factors are proposed, being the form factor α, fulfillment factor β and 

the regularity factor γ. The threshold values for each of these factors were defined based 

on experience. 

The form factor α compares the maximum defect size in x and y, being its 

objective to distinguish between the transversal and longitudinal orientations. However, 
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form factor α does not distinguish the circular, oblique, irregular and complex 

orientations. The form factor α is determined Equation 5.4 and Table 5.12 shows the 

values of the form factor α for the distinction of the transversal and longitudinal 

orientations determined so far, as well as schematic illustrations of the defects. 

                                                       Equation 5. 4 

 

Table 5. 12: Classification based on form factor α. 

α condition Classification 

α < 0.3 

Transversal  

α > 0.7 

Longitudinal  

0.3 ≥ α ≤ 0.7 

Oblique, circular, irregular or complex 

 

 

The fulfillment factor β compares the area of the defect with the area of a 

circumscribed circle whose diameter is the maximum size of the defect, being applied to 

distinguish the circular defects of the others. However, fulfillment factor β does not 

distinguish oblique, irregular and complex defects. The fulfillment factor β is 

determined by Equation 5.5 and Table 5.13 shows the values of the fulfillment factor β 

for the classification of the irregular and oblique orientation determined so far, as well 

as schematic illustrations of the defects. 

                                       Equation 5. 5 
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Table 5. 13: Classification based on fulfilment factor β. 

β condition Classification 

β > 0.6 

Circular  

 

β < 0.6 

Oblique, irregular or complex 

 

 

The regularity factor γ Compares the diagonal of a rectangle circumscribed to the 

defect oriented with the X and Y axes to the length of the central curve of the defect, 

being applied to distinguish irregular and oblique defects to the others. However, 

regularity factor γ does not distinguish complex defects. The regularity factor γ is 

determined by Equation 5.6 and Table 5.14 shows the values of the regularity factor γ 

for the classification of the circular orientation determined so far, as well as schematic 

illustrations of the defects. 

                                  Equation 5. 6 
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Table 5. 14: the values of the regularity factor γ for the classification of the circular 

orientation. 

γ condition Classification 

γ < 0.3 

Irregular 

 

γ > 0.3 

Oblique 

 

 

 

Using the form factor α, fulfilment factor β and the regularity factor γ it is 

possible to distinguish between the directions of longitudinal, transversal, circular, 

irregular and oblique defects. Consequently, it is also possible to distinguish complex 

defects by exclusion. Table 5.15 summarizes the rules developed so far for the 

classification of defects. 
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Table 5. 15: Summary of factors for classifying defects in terms of their orientation. 

Orientation Example 
Condition: Determinant metrics 

Non-determining metrics 

Longitudinal 
 

if α > 0.7 

defect = Longitudinal 

Transversal 

 

if α < 0.3 

defect = Transversal 

Circulars 

 

if 0.3 ≥ α ≤ 0.7 

if  β > 0.6 

defect = Circular 

Oblique 

 

if 0.3 ≥ α ≤ 0.7 

if  β < 0.6 

if  γ > 0.3 

defect = Oblique 

Irregular 

 

if 0.3 ≥ α ≤ 0.7 

if  β < 0.6 

if  γ < 0.3 

defect = Irregular 

Complex 

 

else 

 

 

ii. Morphology 

 

Also based on the defect catalogues of the pipe mill, the defect morphology can 

be divided into cracks, dents, scratch and extended scratch as described in chapter 4. To 

separate each of these defect morphology two rules were stablished the first being for 

the cases where the defects have transversal, longitudinal or oblique orientations a 
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sequence of dimensional comparisons should be performed. Follow below the sequence 

to be performed and Figure 5.54 a) shows an illustration of the linear regression and in 

Figure 5.54 b) shows the parameters dx' and dy' to be calculated in the axis orientation 

according to the linear regression of the CV.  

 

 

Figure 5. 54: a) illustration of the linear regression; b) shows the parameters dx' and dy' 

to be calculated in the axis orientation according to the linear regression of the CV. 

 

If defect = transversal, longitudinal or oblique, follow: 

 

• Linear regression of the CV ➔ axis x’ of defect 

• Calculate maximum axis dimensions x' and y’ ➔ dx’ and dy’ 

• If dx’ > 200 mm ➔ Extended scratch 

• If dy’ < 3 mm ➔ Crack 

• If 3 mm ≥ dy’ ≤ 10 mm ➔ Scratch 

• If dy’ > 10 mm ➔ General defect 

 

 The second one is for the cases where the defects have circular orientation a 

comparison based on its depth should be performed, aiming the classification between 

dent and intense dent. 

 

If defect = circular ➔ Dent 

 

 

iii. Depth 

The intensity of the test response is used as a relative measure of the defect depth, 

thus generating an estimation of the severity of the detected defect. Table 5.14 shows 

the indication of the severity of the classified defect. 
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Table 5. 16: Defect severity classification. 

Depth Severity 

h < 6% Wall thickness Green 

6% ≥ h ≤ 10% Wall thickness Yellow 

h > 10% Wall thickness Red 

 

5.4.2.  Validation of the developed algorithm 

This subsection presents the validation of the developed algorithm based on the 

structured light measurements results of all defects on the several samples from section 

4.1 As an example, the reconstruction by structured light of defect 4 of Pipe 01 is shown 

in Figure 5.55 a) and in Figure 5.55 b) is shown the result map together with the 

recognition of the defect (contour of the defect) made by the algorithm developed. In 

Figure 5.55 c) is shown only the region of contour together with the CV of defect 4. 

Figure 5.56 shows the developed algorithm representative result of some other defects. 

The Table 5.17 shows the nominal differences between the main values extracted by the 

software with the real defects values measured by SLS and Figure 5.57 a), b), c), d) and 

e) shows the bar diagram of respectively comparison of the SLS and the developed 

algorithm measurements of length, width, depth, perimeter and area.. Based on these, it 

is possible to see the similarity of the results towards the validation of the algorithm 

developed. 
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Figure 5. 55: a) Result for the structured light inspection of defect 4; b) the defect 

recognition map is shown together with its contour delimitation made by the developed 

algorithm; c) the contour and the defect's CV are shown. 
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a) b) 

  

c) d) 

 
 

e) f) 

  

g) h) 

  

i) j) 

 
 

k) l) 

  

Figure 5. 56: Digital twin of defects by structured light respectively in a), c), e), g), i) 

and k) with their respective maps and contours made by the developed algorithm in b), 

d), f), h), j) and l). 
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Table 5. 17: Differences of measures between the SLS and the algorithm developed. 

Defect Length (mm) Width (mm) Depth (mm) Perimiter (mm) Area (mm2) 

Defect 1 -0.54 -0.87 -0.02 -7.88 -16.07 

Defect 2 0.01 -0.94 0.03 5.66 -2.59 

Defect 3 -0.39 -0.06 0.03 -2.90 -9.00 

Defect 4 -0.62 -0.33 0.02 -2.62 7.43 

Defect 5 0.46 -0.36 -0.03 -7.45 -15.08 

Defect 6 0.30 -0.66 -0.01 2.76 8.01 

Defect 7 0.67 0.71 -0.06 -2.11 -6.59 

Defect 8 -0.49 0.61 -0.12 -4.78 -14.11 

Defect 9 0.44 -0.53 -0.11 -4.12 -11.76 

Defect 10 -0.55 -0.69 0.03 -6.68 -12.89 

Defect 11 -0.15 -0.13 0.08 2.16 -15.95 

Defect 12 0.47 -0.35 0.07 -6.61 15.59 

Defect 13 -0.42 0.14 -0.06 -5.63 -16.99 

Defect 14 -0.18 -0.52 -0.06 -8.90 -13.39 

Defect 15 -0.88 0.36 -0.08 -4.97 4.34 

Defect 16 0.86 -0.40 -0.06 9.53 11.95 

Defect 17 0.24 -1.26 -0.05 -3.94 -18.75 

Defect 18 -0.37 -0.22 -0.07 -6.40 -8.10 

Defect 19 -0.16 -0.19 -0.02 -4.19 -9.44 

Defect 20 -0.18 -0.42 -0.06 3.98 -20.15 

Defect 21 0.10 -0.24 -0.02 -2.20 -7.51 

Defect 22 -0.15 -0.45 -0.11 -8.31 -11.11 

Defect 23 -0.37 -0.59 0.18 2.81 -14.78 

Defect 24 -0.35 -0.13 -0.11 -8.28 -17.67 

Defect 25 -0.39 -0.48 0.15 -7.40 -12.97 

Defect 26 -0.65 -0.30 0.10 -9.30 -9.75 

Defect 27 -0.11 -0.85 -0.18 -5.47 -15.34 

Defect 28 -0.25 -0.16 -0.48 -0.43 -2.64 

Defect 29 -0.03 0.15 0.06 1.89 -0.82 

Defect 30 0.10 0.20 0.07 -4.63 0.82 

Defect 31 0.05 0.09 -0.05 -1.61 0.79 

Defect 32 0.05 -0.35 0.03 -0.86 -1.83 

Defect 33 -0.11 -0.16 -0.20 -0.19 -1.40 

 



146 

 

 

Figure 5. 57: Comparison of length a), width b), depth c), perimeter d) and area e) 

measurements between the SLS and the developed algorithm. 

 

In order to analyze the precision of the developed algorithm, it was first investigated 

if the difference error for length, width and depth would also behave as a random 

sampling from normal distribution. With the software Minitab®, it was possible to 

visually compare the Probability Distribution Plot of Difference (PDPD), as can be seen 

in Figure 5.58. It can be observed that the depth has a greater precision, because its 

curve is narrower compared to the length and width curves. Both the length and the 

width have very similar accuracies, because their curves have roughly the same spread 

and average.  Then it was performed an Anderson-Darling test (STEPHENS, 1974) for 

each dimension which consists in a statistical test that confronts the calculated p-value 

for the dataset with an “AD” critical value, as shown in Figure 5.59. If the data’s p-

value is less than the AD statistic, the dataset should not be considered to be normally 

distributed. 
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Figure 5. 58: Probability distribution plot of the difference between commercial SLS 

and developed algorithm. 

 

 

Figure 5. 59: Anderson-Darling test to verify if the difference data could be treated as 

normally distribute. 

 

In Table 5.18 all the parameters could be treated as normally distributed as the 

data p-value was higher than the critical AD value for each case. Thus, resulting in an 

average error of only 0.3 mm for the superficial characteristics (length, width) and close 
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to zero error in depth data (0.02 mm). Based on the collected data for length, width and 

depth, it is expected that the results will be comprehended mostly between -0.88 mm 

and 0.86 mm maximum error for the length, -1.26 mm and 0.71 mm for width and -0.20 

mm and 0.17 mm for depth, enough for engineering applications. 

 

Table 5. 18: Statistical evaluation of the measurement errors. 

Dimension 
Average 

(mm) 

Standard 

Deviation 

(mm) 

Mini-

mum 

(mm) 

Maximum 

(mm) 

P_value 

(-) 

AD_stat 

(-) 

Length -0.11 0.40 -0.88 0.86 0.464 0.286 

Width -0.29 0.42 -1.26 0.71 0.603 0.345 

Depth -0.02 0.08 -0.20 0.17 0.552 0.304 

 

 The Gaussian probability distribution chart cannot be used to evaluate the results 

for the perimeter and area because they do not follow a normal data distribution. An 

alternative probability function that can represent a sum of square values, such as the 

perimeter, or the multiplication of dimensional values, such as the area, is the 3 

parameter Weibull probability distribution. Figure 5.60 shows the Weibull for the 

perimeter results and Figure 5.61 for the area results. In addition, the AD test is also 

applied to check whether the data can be represented by the Weibull of three parameters 

and, consequently, the accuracy of the results obtained by the developed algorithm can 

be evaluated. 
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Figure 5. 60: Anderson-Darling test to verify if the difference SLS data of perimeter 

could be treated as 3 parameter Weibull distribution. 

 

 

Figure 5. 61: Anderson-Darling test to verify if the difference SLS data of area could be 

treated as 3 parameter Weibull distribution. 

 

 As the p-value is higher than the AD-value for both the perimeter and the area, it 

can be stated that in Table 5.19 all the parameters could be treated as 3-Parameter 

Weibull distribution. The obtained error median was of 4.12 mm for the perimeter and 
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9.44 mm2 for area data. Based on the collected data is expected that the results will be 

comprehended mostly between -9.30 mm to 9.53 mm maximum error for the perimeter 

and -20.15 mm2 to 15.59 mm2 for area, enough for engineering and the algorithm 

applications itself. In addition, it can still be noted that the majority of the data is 

contained between -0.31 mm and -6.64 mm for the perimeter and between -1.11 mm2 

and -14.93 mm2 for the area. 

 

Table 5. 19: Statistical evaluation of difference of the measurement errors. 

Dimension Perimeter Area 

Median -4.12 mm -9.44 mm2 

First quartile -0.31 mm -1.11 mm2 

Third quartile -6.64 mm -14.93 mm2 

Minimun -9.30 mm -20.15 mm2 

Maximun 9.53 mm 15.59 mm2 

P_value >0.500 >0.500 

AD_stat 0.134 0.180 

 

 Based on the results presented so far in this section, it is possible to validate the 

accuracy and functionality of the developed algorithm using the SLS technique. It can 

be conservatively stated that the length and width have an accuracy of ±1 mm, the depth 

of ±0.5 mm, the perimeter of ±10 mm and the area of ±25 mm2. 

Based on the measurements made by the algorithm, the process of classification 

of defects was performed in accordance with section 5.4.1 d). The following Table 5.20 

shows the result for the classification of the defects inspected by SLS and processed by 

the developed algorithm. As it can be observed, still in table 5.20, the developed 

algorithm classification response for the 33 inspected defects was excellent, since there 

was only one deviation from reality. This deviation occurred for defect 3, where the 

developed algorithm indicated a non-conservative response as to the severity of the 

defect. This question can be easily resolved by inserting a safety margin or even a 
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variation in the rule for determining the severity of the defect, according to the required 

demand. 

Table 5. 20: Classification of defects according to their orientation, morphology and 

severity (by color scale). 

Defect Real (Orientation / Morphology) Algorithm (Orientation / Morphology) 

Defect 1 Circular / Intense dent Circular / Intense dent 

Defect 2 Circular / Intense dent Circular / Intense dent 

Defect 3 Circular / Intense dent Circular / Intense dent 

Defect 4 Longitudinal / Scratch Longitudinal / Scratch 

Defect 5 Longitudinal / Scratch Longitudinal / Scratch 

Defect 6 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 7 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 8 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 9 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 10 Longitudinal / Scratch Longitudinal / Scratch 

Defect 11 Longitudinal / Scratch Longitudinal / Scratch 

Defect 12 Longitudinal / Scratch Longitudinal / Scratch 

Defect 13 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 14 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 15 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 16 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 17 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 18 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 19 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 20 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 21 Longitudinal / Scratch Longitudinal / Scratch 

Defect 22 Longitudinal / Scratch Longitudinal / Scratch 

Defect 23 Longitudinal / Scratch Longitudinal / Scratch 

Defect 24 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 25 Longitudinal / Scratch Longitudinal / Scratch 

Defect 26 Longitudinal / Scratch Longitudinal / Scratch 

Defect 27 Longitudinal / Scratch Longitudinal / Scratch 

Defect 28 Longitudinal / Crack Longitudinal / Crack 

Defect 29 Longitudinal / Crack Longitudinal / Crack 

Defect 30 Longitudinal / Crack Longitudinal / Crack 

Defect 31 Longitudinal / Crack Longitudinal / Crack 

Defect 32 Longitudinal / Scratch Longitudinal / Scratch 

Defect 33 Longitudinal / Scratch Longitudinal / Scratch 
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The technique of measurement and data generation by SLS has proved to be 

suitable for evaluation and validation of the developed algorithm. The performance of 

the developed algorithm demonstrated its efficiency in automatically analyzing the data 

obtained by the structured light system, as well as performing the defect recognition and 

evaluation with an accuracy conservatively stated for length and width of ±1 mm, for 

depth of 0.5 mm, for perimeter of 10 mm and for area of 25 mm. In addition, it was also 

demonstrated the functionality of the developed classification algorithm regarding 

defect’s orientation, morphology and severity, proving then to be a worthy tool to reach 

the automation of surface inspections processing on-line data from in-line inspection 

system. 

 

5.4.3.  Results processed by the developed algorithm 

Once the developed algorithm has been validated, the data obtained by 

inspections with laser line, ECs and Hall sensor were processed by the algorithm to 

evaluate its performance. 

 

a. Laser line system 

 It is possible to observe representatively the mapping results achieved by the 

algortithm in Figure 5.62, on the right column. On the left column there are the results 

from the Digital Twin. It’s clear the resolution of the defect’s detection through the 

colour map shows a similarity results between the digital twin and the algorithm. An 

important detail to highlight is on the comparison between defect 29 on Figure 5.56 l) 

and Figure 5.62 l), because although the qualitative result of this defect for LL appears 

worse than that of the digital twin, there is no influence on the quantitative results, as 

will be shown below. 
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a) b) 

 

 

c) d) 

 
 

e) f) 

 
 

g) h) 

  

i) j) 

 
 

k) l) 

 
 

Figure 5. 62: Reconstruction of defects by structured light respectively in a), c), 

e), g), i) and k) with their respective maps and contours made by the developed 

algorithm using LL data in b), d), f), h), j) and l). 
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The Table 5.21 and 5.22 shows the nominal differences between the main values 

extracted by the developed algorithm from LL’s data with the real defect’s values 

measured by SLS commercial software from LL’s data. 

 

Table 5. 21: Differences of measures between the LL measures on SLS commercial 

software and the LL's from the developed algorithm – Part 1. 

Defect Length (mm) Width (mm) Depth (mm) Perimeter (mm) Area (mm²) 

Defect 1 0.24 -0.59 -0.03 -2.57 -10.71 

Defect 2 -0.20 0.64 0.06 11.19 7.07 

Defect 3 0.21 -0.12 0.02 5.04 -0.63 

Defect 4 -0.53 -0.44 -0.03 2.80 15.36 

Defect 5 0.69 -0.13 -0.02 -1.95 -8.40 

Defect 6 -0.31 0.20 -0.10 11.64 14.23 

Defect 7 -0.42 0.88 -0.02 7.18 2.33 

Defect 8 -0.91 0.41 0.25 5.48 -5.26 

Defect 9 0.14 -0.91 0.08 2.72 -1.62 

Defect 10 -0.51 0.19 0.06 0.06 -4.15 

Defect 11 0.52 -0.05 0.01 8.05 -6.16 

Defect 12 0.18 -0.19 0.02 3.53 22.46 

Defect 13 -0.66 -0.17 -0.05 5.23 -6.55 

Defect 14 -0.11 0.03 0.13 0.58 -3.71 

Defect 15 0.99 -0.48 0.29 0.33 12.81 

Defect 16 1.01 0.14 0.18 15.70 21.92 

Defect 17 0.48 -0.30 0.27 3.85 -10.39 

Defect 18 0.14 -0.40 0.08 1.28 0.06 

Defect 19 0.75 -0.06 0.22 2.76 -2.52 

Defect 20 -0.06 -0.46 0.08 12.15 -12.88 

Defect 21 -0.46 -0.13 -0.14 5.47 2.43 

Defect 22 0.19 0.94 -0.19 0.68 -2.53 

Defect 23 -0.30 0.30 0.19 11.47 -7.41 

Defect 24 0.67 0.82 -0.06 -2.70 -12.51 

Defect 25 -0.91 -0.58 -0.06 2.91 -6.80 

 



155 

 

Table 5. 22: Differences of measures between the LL measures on SLS commercial 

software and the LL's from the developed algorithm – Part 2 continuation. 

Defect Length (mm) Width (mm) Depth (mm) Perimeter (mm) Area (mm²) 

Defect 26 0.28 0.63 -0.10 0.49 0.71 

Defect 27 -0.96 -0.11 0.12 5.52 -7.92 

Defect 28 -0.37 0.16 -0.03 6.41 2.50 

Defect 29 -0.44 -0.02 0.10 8.45 8.37 

Defect 30 -0.67 0.33 0.09 1.36 6.64 

Defect 31 -0.14 0.31 0.05 9.17 7.57 

Defect 32 0.09 -0.09 0.00 8.96 3.76 

Defect 33 -0.19 0.04 0.02 9.64 6.60 

 

In order to analyze the precision of LL’s results on the developed algorithm, it was 

first investigated if the difference error for length, width and depth would also behave as 

a random sampling from normal distribution on Minitab®. It was possible to visually 

compare the PDPD, as can be seen in Figure 5.63. It can be observed that the depth has 

a greater precision, because its curve is narrower compared to the length and width 

curves. Both the length and the width have very similar accuracies, because their curves 

have roughly the same spread and average. Then it was performed an Anderson-Darling 

test (STEPHENS, 1974) for each dimension, as shown in Figure 5.64. 
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Figure 5. 63: Probability distribution plot of the difference between LL and developed 

algorithm. 

 

 

Figure 5. 64: Anderson-Darling test to verify if the difference LL data could be treated 

as normally distribute. 
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In Table 5.23 all the parameters could be treated as normally distributed as the 

data p-value was higher than the critical AD value for each case. Thus, resulting in an 

average error of only 0.2 mm for the width and close to zero error in depth and length 

data. Based on the collected data for length, width and depth data is expected that the 

results will be comprehended mostly between -0.96 mm and 1.01 mm maximum error 

for the length, -0.91 mm and 0.94 mm for width and -0.19 mm and 0.29 mm for depth. 

Table 5. 23: Statistical evaluation of the measurement errors. 

Dimension 
Average 

(mm) 

Standard 

Deviation 

(mm) 

Minimum Maximum 
P_value 

(-) 

AD_stat 

(-) 

Length -0.05 0.54 -0.96 1.01 0.752 0.242 

Width 0.20 0.44 -0.91 0.94 0.513 0.323 

Depth 0.04 0.12 -0.19 0.29 0.549 0.305 

 

 As already clarified the Gaussian probability distribution chart cannot be used to 

evaluate the results for the perimeter and area because they do not follow a normal data 

distribution. Figure 5.66 shows the Weibull result of three parameters for the perimeter 

results and Figure 5.67 for the area results. In addition, the AD test is also applied to 

check whether the data can be represented by the Weibull of three parameters and, 

consequently, the accuracy of the results obtained by the developed algorithm can be 

evaluated. 
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Figure 5. 65: Anderson-Darling test to verify if the difference LL data of perimeter 

could be treated as 3 parameter Weibull distribution. 

 

Figure 5. 66: Anderson-Darling test to verify if the difference LL data of area could be 

treated as 3 parameter Weibull distribution. 
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 As the p-value is higher than the AD-value for both the perimeter and the area, it 

can be stated that the in Table 5.24 all the parameters could be treated as 3-Parameter 

Weibull distribution. The obtained error median was of -5.04 mm for the perimeter and 

0.62 mm2 for area data. Based on the collected data is expected that the results will be 

comprehended mostly between -2.70 mm to 15.69 mm maximum error for the perimeter 

and -12.89 mm2 to 22.45 mm2 for area. In addition, it can still be noted that the majority 

of the data is contained between 0.98 mm and 8.70 mm for the perimeter and between   

-6.67 mm2 and 6.85 mm2 for the area. 

 

Table 5. 24: Statistical evaluation of difference of the measurement errors. 

Dimension Perimeter Area mm2 

Median -5.04 mm -0.62 mm2 

First quartile 0.98 mm -6.67 mm2 

Third quartile 8.70 mm 6.85 mm2 

Minimum -2.70 mm -12.89 mm2 

Maximum 15.69 mm 22.45 mm2 

P_value >0.500 >0.500 

AD_stat 0.240 0.146 

 

Also based on the measurements made by the algorithm on LL data, the process 

of classification of defects was performed. The following Table 5.26 and 5.27 shows the 

result for the classification of the defects inspected by LL and processed by the 

developed algorithm. As it can be observed, still in Table 5.25 and 5.26, the developed 

algorithm classification response for the 33 inspected defects was also excellent, since 

there was only two deviation from reality. This deviation occurred for defect 4 and 

defect 22, where the developed algorithm indicated a conservative response for the 

severity of the defect. As already mentioned, this question can be easily resolved by 

inserting a safety margin or even a variation in the rule for determining the severity of 

the defect, according to the required demand. 

 

 

 



160 

 

Table 5. 25: LL’s classification of defects according to their orientation, morphology 

and severity (by color scale) – part 1. 

Defect 
Real (Orientation / Morphology / 

Severity - color) 

Algorithm (Orientation / 

Morphology / Severity - color) 

Defect 1 Circular / Intense dent Circular / Intense dent 

Defect 2 Circular / Intense dent Circular / Intense dent 

Defect 3 Circular / Intense dent Circular / Intense dent 

Defect 4 Longitudinal / Scratch Longitudinal / Scratch 

Defect 5 Longitudinal / Scratch Longitudinal / Scratch 

Defect 6 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 7 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 8 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 9 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 10 Longitudinal / Scratch Longitudinal / Scratch 

Defect 11 Longitudinal / Scratch Longitudinal / Scratch 

Defect 12 Longitudinal / Scratch Longitudinal / Scratch 

Defect 13 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 14 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 15 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 16 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 17 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 18 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 19 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 20 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 21 Longitudinal / Scratch Longitudinal / Scratch 

Defect 22 Longitudinal / Scratch Longitudinal / Scratch 
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Table 5. 26: LL’s classification of defects according to their orientation, morphology 

and severity (by color scale) – part 2 continuation. 

Defect Real (Orientation / Morphology) Algorithm (Orientation / Morphology) 

Defect 23 Longitudinal / Scratch Longitudinal / Scratch 

Defect 24 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 25 Longitudinal / Scratch Longitudinal / Scratch 

Defect 26 Longitudinal / Scratch Longitudinal / Scratch 

Defect 27 Longitudinal / Scratch Longitudinal / Scratch 

Defect 28 Longitudinal / Crack Longitudinal / Crack 

Defect 29 Longitudinal / Crack Longitudinal / Crack 

Defect 30 Longitudinal / Crack Longitudinal / Crack 

Defect 31 Longitudinal / Crack Longitudinal / Crack 

Defect 32 Longitudinal / Scratch Longitudinal / Scratch 

Defect 33 Longitudinal / Scratch Longitudinal / Scratch 

 

LL technique has also proved to bring excellent results for the developed 

algorithm. The performance of the developed algorithm demonstrated, as well for SLS, 

its efficiency in automatically analyzing the data obtained by laser line system. Besides 

that, it was also possible to observe the algorithm’s good performance for the defect 

recognition and evaluation with an accuracy conservatively stated for length and width 

of ±1.0 mm, the depth of ±0.5 mm, the perimeter of 20 mm and the area of 25 mm2 and, 

in addition, it was demonstrated the functionality regarding defect’s orientation, 

morphology and severity.  

 

b. Electromagnetic System 

The same statistical evaluation done so far for SLS and LL were done for EC and 

Hall sensor geometric profilometer (HGP) results. However, for these techniques the 

representative defects were selected to be processed in the developed algorithm. For EC 

defects from 1 to 4, 20, 25 to 28, 32 and 33 were analyzed and defects from 1 to 4, 10 to 

12, 25, 27, 28 and 32 were used for HGP. 

 

i. EC data 

It is possible to observe the exemplary mapping results achieve by the developed 

algorithm in Figure 5.67 for EC on the right column and its comparison with the digital 

twin on the left column. The result of the EC maps is not as clear as those presented for 



162 

 

LL and SLS, as was already expected, but it is still evident the detection of defects by 

the technique along with the processing performed. A peculiarity of the EC results can 

be observed in Figure 5.67 d), where the EC technique detects the different notches seen 

in c) as a single defect. This was also expected, as the EC technique has a volumetric 

response of the inspected region and the diameter of the coils being greater than the 

distance between the notches the response signal mixes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 
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c) d) 

 
 

e) f) 

  

g) h) 

 

 

i) j) 

 
 

k) l) 

  

 

Figure 5. 67: Reconstruction of defects by structured light respectively in a), c), e), g), i) 

and k) with their respective maps and contours made by the developed algorithm using 

EC data in b), d), f), h), j) and l). 
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The Table 5.27 shows the nominal differences between the main values extracted 

by the developed algorithm from EC’s data with the real defect’s values measured by 

SLS commercial software from its digital twin data. Unlike the other results presented 

so far, the depth of defects will not be evaluated for EC data, since the EC response is a 

voltage and due to the volumetric effect of it the depth versus voltage relation is not 

direct. The development of this correlation itself should be a separate research work and 

it is outside the scope of the present work. 

 

Table 5. 27: Differences of measures between the SLS measures on SLS commercial 

software and the EC's from the developed algorithm. 

Defect Length (mm) Width (mm) Perimeter (mm) Area (mm²) 

Defect 1 -4.14 -3.05 13.41 25.24 

Defect 2 -11.21 -1.08 6.40 -113.15 

Defect 3 -5.00 -1.00 -9.82 -52.03 

Defect 4 3.22 5.01 10.19 29.60 

Defect 20 8.65 6.84 -28.12 128.78 

Defect 25 -4.39 1.28 -4.36 -55.13 

Defect 26 -0.26 -1.61 -41.19 -35.39 

Defect 27 -3.52 1.61 37.29 67.44 

Defect 28 0.43 1.13 -6.85 0.27 

Defect 32 -0.06 1.02 7.10 144.02 

Defect 33 1.73 3.23 -19.14 51.22 

 

In order to analyze the precision of EC’s results on the developed algorithm, it was 

first investigated if the difference error for length and width would also behave as a 

random sampling from normal distribution on Minitab®. It was possible to visually 

compare the PDPD, as can be seen in Figure 5.68 and it can be observed that the width 

has a slightly greater precision, because its curve is narrower compared to the length 

curve. Then it was performed an Anderson-Darling test (Stephens, 1974) for both 

dimensions, as shown in Figure 5.69. 
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Figure 5. 68: Probability distribution plot of the difference between EC and developed 

algorithm. 
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Figure 5. 69: Anderson-Darling test to verify if the difference EC data could be treated 

as normally distribute. 

In Table 5.28 all the parameters could be treated as normally distributed as the 

data p-value was higher than the critical AD value for each case. Thus, resulting in an 

average error of -13.23 mm for the length and 1.21 mm for width. Based on the 

collected data for length and width data’s is expected that the results will be 

comprehended mostly between -11.21 mm and 8.65 mm maximum error for the length 

and -3.05 mm and 6.84 mm for width.  

 

Table 5. 28: Statistical evaluation of the measurement errors. 

Dimension Average Standard Minimum Maximum P_value AD_stat 



167 

 

(mm) Deviation 

(mm) 

(-) (-) 

Length -1.32 5.18 -11.21 8.65 0.612 0. 267 

Width 1.21 2.94 -3.05 6.84 0. 579 0.277 

 

 Figure 5.70 shows the Weibull result of three parameters for the perimeter 

results and Figure 5.71 for the area results. In addition, the AD test is also applied to 

check whether the data can be represented by the Weibull of three parameters and, 

consequently, the accuracy of the results obtained by the developed algorithm can be 

evaluated. 

 

 

Figure 5. 70: Anderson-Darling test to verify if the difference EC data of perimeter 

could be treated as 3 parameter Weibull distribution. 
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Figure 5. 711: Anderson-Darling test to verify if the difference EC data of area could be 

treated as 3 parameter Weibull distribution. 

 

 As the p-value is higher than the AD-value for both the perimeter and the area, it 

can be stated that the in Table 5.30 all the parameters could be treated as 3-Parameter 

Weibull distribution. The obtained error median was of -4.36 mm for the perimeter and 

25.24 mm2 for area data. Based on the collected data is expected that the results will be 

comprehended mostly between -41.19 mm and 37.29 mm maximum error for the 

perimeter and -113.50 mm2 and 144.02 mm2 for area. In addition, it can still be noted 

that the majority of the data is contained between -19.14 mm and 10.19 mm for the 

perimeter and between -52.03 mm2 and 67.44 mm2 for the area. 
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Table 5. 29: Statistical evaluation of difference of the measurement errors. 

Dimension Perimeter Area 

Median -4.36 mm 25.24 mm2 

First quartile -19.14 mm -52.03 mm2 

Third quartile 10.19 mm 67.44 mm2 

Minimum -41.19 mm -113.150 mm2 

Maximum 37.29 mm 144.02 mm2 

P_value >0.500 >0.500 

AD_stat 0.204 0.187 

 

 Based on the results presented for EC data, it is also possible to validate the 

accuracy and functionality of the algorithm using the EC technique. It can be 

conservatively stated that the length has an accuracy of ±15.0 mm, the width of ±10.0 

mm, the perimeter of ±45 mm and the area of ±150 mm2. As expected, these values are 

very similar with the results obtained by SLS. These results are much less accurate 

when compared to the results of optical techniques. It is important to emphasize that a 

relevant part of these errors is associated to human error due to manual inspection and, 

consequently, variation in the speed of inspection and variation in the lateral resolution 

of the inspection matrix performed. However, the algorithm developed was able to 

automatically process EC data and extract its main geometric features. 

Also based on the measurements made by the algorithm on EC data, the process 

of classification of defects was performed. The following Table 5.30 shows the result 

for the classification of the defects inspected by EC and processed by the developed 

algorithm. As it can be observed, still in Table 5.30 the algorithm classification 

response for the 11 inspected data of defects was also good, since there was no 

deviation from reality, regarding the defect orientation and morphology.  
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Table 5. 30: EC’s classification of defects according to their orientation and 

morphology. 

Defect Real (Orientation / Morphology) Algorithm (Orientation / Morphology) 

Defect 1 Circular / Dent Circular / Dent 

Defect 2 Circular / Dent Circular / Dent 

Defect 3 Circular / Dent Circular / Dent 

Defect 4 Longitudinal / Scratch Longitudinal / Scratch 

Defect 20 Longitudinal / Extended scratch Longitudinal / Extended scratch 

Defect 25 Longitudinal / Scratch Longitudinal / Scratch 

Defect 26 Longitudinal / Scratch Longitudinal / Scratch 

Defect 27 Longitudinal / Scratch Longitudinal / Scratch 

Defect 28 Longitudinal / Crack Longitudinal / Crack 

Defect 32 Longitudinal / Scratch Longitudinal / Scratch 

Defect 33 Longitudinal / Scratch Longitudinal / Scratch 

 

EC technique has also proved to bring excellent results for the developed 

algorithm, even with the issues regarding the manually data acquisition. The 

performance of the developed algorithm demonstrated its functionality in automatically 

analyzing the data obtained by EC tests. Besides that, it was also possible to observe the 

algorithm’s performance for the defect recognition and evaluation with an accuracy 

conservatively stated for length have an accuracy of ±15.0 mm, the width of ±10.0 mm, 

the perimeter of ±45 mm and the area of ±150 mm2 and, in addition, it was 

demonstrated the defect’s orientation and morphology classification.  

 

ii. HGP data 

It is possible to observe a representatively mapping results achieve by the 

developed algorithm in Figure 5.72 for HGP on the right column and its comparison 

with the digital twin on the left column. The result of the HGP maps is also not as clear 

as those presented for LL and SLS, as was already expected, but it is still evident the 

detection of defects by the technique along with the processing performed. A significant 

point for HGP results is that their lateral resolution is highly dependent on the distance 
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between the inspection steps and the region where the tip of the rod touches the defect. 

For this reason, the results of the defect maps are slightly deformed, despite the 

excellent signal to noise ratio obtained. 
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a) b) 

  

c) d) 

 
 

e) f) 

 
 

g) h) 

  

i) j) 

 
 

k) l) 

  

Figure 5. 72: Reconstruction of defects by structured light respectively in a), c), e), g), i) 

and k) with their respective maps and contours made by the developed algorithm using 

HGP data in b), d), f), h), j) and l). 
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The Table 5.31 shows the nominal differences between the main values extracted 

by the developed algorithm from HGP’s data with the real defect’s values measured by 

SLS commercial software from the digital twin data. 

 

Table 5. 31: Differences of measures between the SLS measures on SLS commercial 

software and the HGP's from the developed algorithm. 

Defect Length (mm) Width (mm) Depth (mm) Perimeter (mm) Area (mm²) 

Defect 1 -3.36 -2.00 -0.12 -8.31 -32.67 

Defect 2 -0.26 -1.18 0.02 -10.13 -25.36 

Defect 3 1.48 1.72 -0.12 -8.43 -28.42 

Defect 4 0.00 -1.35 0.06 21.53 -31.53 

Defect 10 2.78 1.60 0.06 -26.16 14.13 

Defect 11 -2.89 0.57 -0.11 -30.16 25.34 

Defect 12 4.37 1.98 -0.05 -25.61 18.97 

Defect 25 -3.34 -0.13 0.10 -43.71 -78.38 

Defect 27 -2.23 -3.10 -0.24 -6.31 -9.71 

Defect 28 -0.37 1.03 -0.22 4.38 0.16 

Defect 32 -0.30 -2.05 -0.10 0.51 -37.92 

 

In order to analyze the precision of HGP’s results on the developed algorithm, it was 

first investigated if the difference error for length, width and depth would also behave as 

a random sampling from normal distribution on Minitab. It was possible to visually 

compare the PDPD, as can be seen in Figure 5.73. It can be observed that the depth has 

also a greater precision, because its curve is narrower compared to the length and width 

curves. Both the length and the width have very similar accuracies, because their curves 

have the same tendency. Unlike the lateral and longitudinal resolution that depend, 

respectively, on the inspection steps and the encoder acquisition rate, the depth comes 

from the calibration shown in section 5.33 and, therefore, has more accurate results. 

Then it was performed an Anderson-Darling test (Stephens, 1974) for each dimension, 

as shown in Figure 5.74. 
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Figure 5. 73: Probability distribution plot of the difference between HGP and developed 

algorithm. 

 

 

Figure 5. 74: Anderson-Darling test to verify if the difference HGP data could be treated 

as normally distribute. 
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In Table 5.32 all the parameters could be treated as normally distributed as the 

data p-value was higher than the critical AD value for each case. Thus, resulting in an 

average error of only 0.4 mm for the length and width and close to zero error in depth 

data (-0.07mm). Based on the collected data for length, width and depth data is expected 

that the results will be comprehended mostly between -3.36 mm and 4.37 mm 

maximum error for the length, -3.10 mm and 1.98 mm for width and -0.24 mm and 0.10 

mm for depth. 

 

Table 5. 32: Statistical evaluation of the measurement errors. 

Dimension 
Average 

(mm) 

Standard 

Deviation 

(mm) 

Minimum 

(mm) 

Maximum 

(mm) 

P_value 

(-) 

AD_stat 

(-) 

Length -0.37 2.52 -3.36 4.37 0.415 0.345 

Width -0.26 1.76 -3.10 1.98 0.434 0.337 

Depth 0.06 0.11 -0.24 0.10 0.426 0.340 

 

 As already clarified the Gaussian probability distribution chart cannot be used to 

evaluate the results for the perimeter and area because they do not follow a normal data 

distribution. Figure 5.75 shows the Weibull result of three parameters for the perimeter 

results and Figure 5.76 for the area results. In addition, the AD test is also applied to 

check whether the data can be represented by the Weibull of three parameters and, 

consequently, the accuracy of the results obtained by the developed algorithm can be 

evaluated. 
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Figure 5. 75: Anderson-Darling test to verify if the difference HGP data of perimeter 

could be treated as 3 parameter Weibull distribution. 

 

 

Figure 5. 76: Anderson-Darling test to verify if the difference HGP data of area could 

be treated as 3 parameter Weibull distribution. 

 

 As the p-value is higher than the AD-value for both the perimeter and the area, it 

can be stated that the in Table 5.33 all the parameters could be treated as 3-Parameter 

Weibull distribution. The obtained error median was of -8.43 mm for the perimeter and 
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-25.36 mm2 for area data. Based on the collected data is expected that the results will be 

comprehended mostly between -43.70 mm and 21.53 mm maximum error for the 

perimeter and -78.38 mm2 and 25.34 mm2 for area. In addition, it can still be noted that 

the majority of the data is contained between -26.16 mm and 0.51 mm for the perimeter 

and between -32.67 mm2 and 14.13 mm2 for the area. 

 

Table 5. 33: Statistical evaluation of difference of the measurement errors. 

Dimension Perimeter Area 

Median -8.43 mm -25.36 mm2 

First quartile -26.16 mm -32.67 mm2 

Third quartile 0.51 mm 14.13 mm2 

Minimum -43.71 mm -78.38 mm2 

Maximum 21.53 mm 25.34 mm2 

P_value >0.500 0.386 

AD_stat 0.275 0.350 

 

Also based on the measurements made by the algorithm on HGP data, the process 

of classification of defects was performed. The following Table 5.34 shows the result 

for the classification of the defects inspected by HGP and processed by the developed 

algorithm. As it can be observed, still in Table 5.34, the algorithm classification 

response for the 11 inspected data defects was also excellent since there was only two 

deviation from reality. This deviation occurred for defect 1 and defect 28, where the 

developed algorithm indicated a non-conservative response for the severity of defect 1 

and indicate defect 28 as a Scratch while it is a crack. As already mentioned, this 

question can be easily resolved by inserting a safety margin or even a variation in the 

rule for determining the severity of the defect, according to the required demand. 
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Table 5. 34: HGP’s classification of defects according to their orientation, morphology 

and severity (by color scale). 

 Real (Orientation / Morphology) 
Algorithm (Orientation / 

Morphology) 

Defect 1 Circular / Dent Circular / Dent 

Defect 2 Circular / Dent Circular / Dent 

Defect 3 Circular / Dent Circular / Dent 

Defect 4 Longitudinal / Scratch Longitudinal / Scratch 

Defect 10 Longitudinal / Scratch Longitudinal / Scratch 

Defect 11 Longitudinal / Scratch Longitudinal / Scratch 

Defect 12 Longitudinal / Scratch Longitudinal / Scratch 

Defect 25 Longitudinal / Scratch Longitudinal / Scratch 

Defect 27 Longitudinal / Scratch Longitudinal / Scratch 

Defect 28 Longitudinal / Crack Longitudinal / Scratch 

Defect 32 Longitudinal / Scratch Longitudinal / Scratch 

 

HGP technique demonstrated its good performance on the results for the 

developed algorithm. It was possible to observe its efficiency in automatically analysing 

the data obtained by HGP. Not only that, but it was also possible to observe the 

algorithm’s good performance on defect recognition and evaluation with an accuracy 

conservatively stated for length and width of ±4.0 mm, the depth of ±0.5 mm, the 

perimeter of 50 mm and the area of 80 mm2 and, in addition, it was demonstrated the 

functionality regarding defect’s orientation, morphology and severity.  
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6. Final considerations 

 

After the presentation, analysis and discussion of the results in the previous 

chapter, the following main conclusions can be reached: 

 

− The structured light technique demonstrated to be an excellent technique as 

reference system for the LL, EC and HGP techniques studied along this work. It 

allowed the precise construction of the inspected surface samples digital twin, as 

well as their evaluation through the manual commercial SLS software with precision 

in the micrometer magnitude; 

 

− The results achieved with the automatic laser line inspection based on the optimized 

parameters developed showed the technique's ability to reconstruct tubular surfaces 

in great detail. Even with a higher data volume when compared to the SLS, it was 

possible to process the data automatically, obtaining dimensional measurement 

results equivalent to those obtained by the SLS. Moreover, a great advantage of this 

technique is its dynamic operation and high data acquisition rate leading, 

consequently, to a large spatial resolution; 

 

− The hybrid configuration of the proposed electromagnetic system proved to be a 

promising solution for the detection of surface defects on tubular surfaces, aiming at 

the automation of the inspection process into the pipe mill. Both laboratory and field 

test results proved that the developed system is able not only to detect defects up to 

1 mm3 but also to have robustness during production line operation; 

 

− An EC probe has been developed especially for the detection of defects in 

cylindrical surfaces of ferromagnetic materials. The main optimal construction 

parameters of the developed probe were 8.0 mm diameter, 3.5 mm height, 800 turns 

of AWG 38 copper wire and 3.5 mm ferrite core. It has been proven both 

experimentally and by computer simulation that the optimum frequency for surface 

defect detection by the developed probe is 5 Khz; 
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− The HGP technique has shown its efficiency for the geometric description of 

surfaces as well as the detection of long defects with low depth. As for EC, a very 

important factor of these techniques for its application for automatic detection and 

classification of surface defects is its lateral resolution. In order to achieve more 

precise results in terms of defect geometry, the distance between the sensors in the 

test matrix must be reduced as much as possible; 

 

− The developed algorithm has demonstrated excellent results in the field of automatic 

defect recognition and classification from different data sources. From the statistical 

analysis of the data obtained by the algorithm and its difference between the main 

geometric characteristics of the defects measured in the reference of the digital twin, 

it was demonstrated that the data from the LL are equivalent to those from the SLS, 

due to the proximity of its averages and standard deviation. Thus, it is shown the 

application of the LL methodology developed together with the optimization of 

parameters in a reliable, accurate and efficient way for dynamic inspections. The 

analysis of the results also shows that the average error of HGP depth is equivalent 

to the results found for LL and SLS data, based on the average error values, being so 

a great tool to monitor difference on the depth geometry tubular goods. EC results 

for length and width showed the greatest error dispersion, due to the amplitude of 

the maximum and minimum values of the analyzed data set and also due to the 

value of being standard deviation. The results for perimeter and area measurements 

for EC and HGP data also have a high dispersion due to the lateral resolution 

employed, i.e., they can be improved by decreasing the distance between the 

inspection steps or sensors; 

 

Differently from what has been found so far both in the literature and in the 

market, this work has developed the concept of the hybridization of electromagnetic and 

optical techniques aiming at the automation of surface inspection. Besides developing 

an electromagnetic methodology, with optimized sensors for cylindrical surfaces, and 

an optical methodology, it was also presented a unique concept through the algorithm 

developed to be able to automatically process data from different sources, recognizing, 

characterizing and automatically classifying the defects detected. 
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7. Outlook and further studies 

 

Following below are recommendations for future work: 

− Construction of LL-based system and electromagnetic techniques in the same 

prototype;  

 

− Perform tests to formulate the relation of the impedance response voltage of the ECs 

to the depth of defects; 

 

− To test algorithm developed for a matrix with more defects and different types, in 

relation to its morphology, orientation and depth; 

 

− To verify limitations of the industrial environment for prototype based on the optical 

system; 
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